Summary of project PR001950

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001950. The data can be accessed directly via it's Project DOI: 10.21228/M8NX50 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR001950
Project DOI:doi: 10.21228/M8NX50
Project Title:Lipid class-specific kinetics of plasma fatty acids, oxylipins, endocannabinoids, lysophospholipids and bile acids upon a lipopolysaccharide challenge of healthy humans and their modulation by anti-oxidative supplements
Project Summary:While molecular mechanisms of inflammatory processes are well characterized, the systemic responses of humans exposed to pathogen-associated molecular pattern with regard to fatty acid derivatives and other lipids have hardly been determined. Here, we present a dual stage controlled clinical intervention study with healthy individuals challenged with lipopolysaccharide. While in a first stage, plasma proteomics and lipidomics was applied to observe the kinetics of inflammatory modulators within eight hours, the effects of a placebocontrolled anti-oxidative intervention were determined in the second stage. Plasma proteome profiling demonstrated the early involvement of platelets detectable within two hours after lipopolysaccharide challenge, followed by the characteristic induction of liver-derived acute phase proteins and innate immune cell-derived alarmins. Untargeted lipidomics demonstrated the early release of fatty acids and taurocholic acid within two hours, followed by complex time courses of various oxylipins and the downregulation of numerous lysophospholipids and deoxycholic acid. Groups of molecules with similar kinetics during the time course analysis upon lipopolysaccharide challenge were observed to have common precursors or synthesizing enzymes. Dietary supplementation with antioxidants did not affect the kinetics of detectable proteins, but significantly downregulated the pro-inflammatory sphingosine-1-phosphate and increased the levels of oxylipins described to facilitate the resolution of inflammation, 20-HEPE and 22-HDoHE. The present study identified a complex network of oxylipins, bile acids, lysophospholipids and endocannabinoids deregulated in plasma upon lipopolysaccharide challenge, introduces platelets as powerful inflammatory modulators and suggests that dietary antioxidant supplementation hardly interferes with the induction of inflammatory processes, but may rather support the resolution of inflammation.
Institute:University of Vienna
Department:Department of Analytical Chemistry
Laboratory:Gerner lab
Last Name:Hagn
First Name:Gerhard
Address:Währingerstraße 38, 1090 Vienna, Austria
Email:gerhard.hagn@univie.ac.at
Phone:+43 1 4277 52375

Summary of all studies in project PR001950

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST003137 Lipid class-specific kinetics of plasma fatty acids, oxylipins, endocannabinoids, lysophospholipids and bile acids upon a lipopolysaccharide challenge of healthy humans and their modulation by anti-oxidative supplements (Part 1/2 - negative mode) Homo sapiens University of Vienna MS 2025-06-02 1 599 Uploaded data (67.2G)*
ST003138 Lipid class-specific kinetics of plasma fatty acids, oxylipins, endocannabinoids, lysophospholipids and bile acids upon a lipopolysaccharide challenge of healthy humans and their modulation by anti-oxidative supplements (Part 2/2 - positive mode) Homo sapiens University of Vienna MS 2025-06-02 1 299 Uploaded data (41G)*
  logo