Summary of Study ST001765

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001127. The data can be accessed directly via it's Project DOI: 10.21228/M81D6M This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001765
Study TitleOptimization of redox metabolite detection in mammalian cells (part I)
Study SummaryConditions were tested to optimize number of cells and extraction buffer for the detection of redox reactive metabolites from mammalian cells. Four different extraction buffers were compared. Derivatization of glutathione was explored as a condition as well. This is an independent repeat.
Institute
Boston Children's Hospital, Harvard Medical School
DepartmentPathology
LaboratoryNaama Kanarek
Last NamePetrova
First NameBoryana
Address300 Longwood Av, Boston, MA, 2115, USA
Emailboryana.petrova@childrens.harvard.edu
Phone6173557433
Submit Date2021-04-21
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2021-05-17
Release Version1
Boryana Petrova Boryana Petrova
https://dx.doi.org/10.21228/M81D6M
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002872
Analysis type MS
Chromatography type HILIC
Chromatography system Thermo Vanquish
Column EMD Millipore ZIC HILIC (150 x 2.1mm,5um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Orbitrap
Ion Mode UNSPECIFIED
Units ppm
  logo