Summary of Study ST000884

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000613. The data can be accessed directly via it's Project DOI: 10.21228/M8F681 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST000884
Study TitleEvidence that COG0325 proteins are involved in PLP homeostasis
Study SummaryPyridoxal 5'-phosphate (PLP) is an essential cofactor for nearly 60 Escherichia coli enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the E. coli COG0325 (yggS) mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The E. coli yggS mutant accumulates the PLP precursor pyridoxine 5'-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic yggS orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.
Institute
University of California, Davis
DepartmentGenome and Biomedical Sciences Facility
LaboratoryWCMC Metabolomics Core
Last NameFiehn
First NameOliver
Address1315 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616
Emailofiehn@ucdavis.edu
Phone(530) 754-8258
Submit Date2017-09-14
Study CommentsLB stands for Luria Bertani medium. MG stands for minimal growth For strains grown on MG OD 0.5 is the mid log growth phase and OD 1.0 is the late log growth phase For strains grown on LB OD 1 is the mid log growth phase and OD 2.0 is the late log growth phase
Raw Data AvailableYes
Raw Data File Type(s)cdf
Analysis Type DetailGC-MS
Release Date2017-10-14
Release Version1
Oliver Fiehn Oliver Fiehn
https://dx.doi.org/10.21228/M8F681
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN001441
Analysis type MS
Chromatography type GC
Chromatography system Agilent 6890N
Column Restek Rtx-5Sil (30m x 0.25mm,0.25um)
MS Type EI
MS instrument type GC-TOF
MS instrument name Leco Pegasus III GC TOF
Ion Mode POSITIVE
Units Counts

Chromatography:

Chromatography ID:CH001012
Instrument Name:Agilent 6890N
Column Name:Restek Rtx-5Sil (30m x 0.25mm,0.25um)
Column Pressure:7.7 PSI (initial condition)
Column Temperature:50 - 330°C
Flow Rate:1 ml/min
Injection Temperature:50°C ramped to 250°C by 12°C/s
Sample Injection:0.5 uL
Oven Temperature:50°C for 1 min, then ramped at 20°C/min to 330°C, held constant for 5 min
Transferline Temperature:230°C
Washing Buffer:Ethyl Acetate
Sample Loop Size:30 m length x 0.25 mm internal diameter
Randomization Order:Excel generated
Chromatography Type:GC
  logo