Summary of Study ST001692

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001088. The data can be accessed directly via it's Project DOI: 10.21228/M82H6Z This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001692
Study TitlePerfluoroalkyl substances and lipid composition in human milk
Study TypeCHEAR Study
Study SummaryPFAS are widely used in commercial products, and so humans have consistent exposure to them via oil- and water-resistant consumer products, fire- fighting foam, and industrial surfactants 1,2. The four PFASs commonly detected in blood, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) 3,4, are present in drinking water supplies both in northern New England as well as in 27 states nationally 5-8. Animal models shows that PFASs have can have effects on both the endocrine system and on adiposity 9-12. Epidemiological evidence shows that the presence of PFASs in maternal serum is associated with changes in maternal serum lipid and cholesterol composition 13,14. Similarly, serum levels of PFAS in adolescents have been associated with increases in serum cholesterol 15. These findings raise interesting questions about the association of PFAS and lipids in human milk. Research has shown the PFASs are present in human milk 16-18, and human milk is composed primarily of lipids 19. However, the relation between PFAS in milk and milk composition is unclear. The chemical and compositional profiles of breast milk are important because of the potential effects on the developing infant. The developmental origins of health and disease hypothesis suggests that early life exposures, such as toxins and nutrients via breast milk, have lasting effects on health, particularly obesity outcomes 20. In fact, some studies have shown associations between PFAS in maternal serum and infant birth weight and later childhood BMI 14,21. Our study will help to better illuminate the potential effects of maternal exposure to PFASs on infant exposure, both through direct transmission into breast milk and indirectly via influence on the lipid profiles of milk. To investigate how early life exposure to perfluoroalkyl substances (PFAS) may affect childhood health outcomes as mediated through breast milk, we propose the following specific aims: 1. Characterize the levels of PFAS in breast milk samples (n=495) in the NHBCS; 2. Characterize the lipid profiles of breast milk samples (n=495) in the NHBCS; 3. Test the relation between PFAS concentration and breast milk lipid profiles; and 4. Test the association between PFAS concentrations in maternal plasma collected during pregnancy with paired breast milk samples (n=100).
Institute
Icahn School of Medicine at Mount Sinai
DepartmentDepartment of Environmental Medicine and Public Health
LaboratoryMount Sinai CHEAR Untargeted Laboratory Hub
Last NameWalker
First NameDouglas
AddressAtran Building RM AB3-39, 1428 Madison Ave
Emaildouglas.walker@mssm.edu
Phone212-241-9891
Submit Date2021-02-10
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Chear StudyYes
Analysis Type DetailLC-MS
Release Date2022-03-11
Release Version1
Douglas Walker Douglas Walker
https://dx.doi.org/10.21228/M82H6Z
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002762 AN002763
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Vanquish Thermo Vanquish
Column Higgins Analytical Targa C18 (50 x 2.1mm,5um) Higgins Analytical Targa C18 (50 x 2.1mm,5um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q-Exactive HFX Thermo Q-Exactive HFX
Ion Mode POSITIVE NEGATIVE
Units Peak intensity Peak intensity

Chromatography:

Chromatography ID:CH002042
Chromatography Summary:Sample extracts were analyzed using an ultra-high performance liquid chromatography (UHPLC) equipped with dual pumps for both C18-pos and C18-negative analysis uysing a Thermo Scientific Vanquish Duo LC interfaced to a Thermo Scientific Q-Exactive HFX with electrospray ionization source operated in positive mode. Samples were maintained at 4C in the autosampler module. For C18-pos separation, 5 uL of sample was injected onto a C18 columns (50 mm × 2.1 mm, 5 µm particle size, Higgins Analytical Inc) maintained at 30C. Separation occurred using Mobile phase A consisted of water with 0.1% formic acid and Mobile phase B consisted of Acetonitrile with 0.1% formic acid. Flow rate was held at at 0.4 ml/min for 1.5 mins, and increased to 0.5 ml/min. Solvent gradients were as follows: 85% solvent A, hold for 1.5 min; linear decrease to 5% solvent A at 5 minutes; hold for 2.5 min, for a total run time of 7.5 min Data was acquired with a mass range of 85-1275 m/z.
Instrument Name:Thermo Vanquish
Column Name:Higgins Analytical Targa C18 (50 x 2.1mm,5um)
Column Temperature:30C
Flow Rate:0.4-0.5 mL/min
Solvent A:100% water; 0.1% formic acid
Solvent B:100% acetonitrile; 0.1% formic acid
Analytical Time:7.5 min
Chromatography Type:Reversed phase
  
Chromatography ID:CH002043
Chromatography Summary:Sample extracts were analyzed using an ultra-high performance liquid chromatography (UHPLC) equipped with dual pumps for both C18-pos and C18-negative analysis using a Thermo Scientific Vanquish Duo LC interfaced to a Thermo Scientific Q-Exactive HFX with electrospray ionization source operated in negative mode. Samples were maintained at 4C in the autosampler module. For C18-neg separation, 5 uL of sample was injected onto a C18 columns (50 mm × 2.1 mm, 5 µm particle size, Higgins Analytical Inc) maintained at 30C. Separation occurred using Mobile phase A consisted of water with 10mM ammonium acetate and Mobile phase B consisted of Acetonitrile. Flow rate was held at at 0.4 ml/min for 1.5 mins, and increased to 0.5 ml/min. Solvent gradients were as follows: 85% solvent A, hold for 1.5 min; linear decrease to 5% solvent A at 5 minutes; hold for 2.5 min, for a total run time of 7.5 min Data was acquired with a mass range of 85-1275 m/z.
Instrument Name:Thermo Vanquish
Column Name:Higgins Analytical Targa C18 (50 x 2.1mm,5um)
Column Temperature:30C
Flow Rate:0.4-0.5 mL/min
Solvent A:100% water; 10mM ammonium acetate
Solvent B:100% acetonitrile
Analytical Time:7.5 min
Chromatography Type:Reversed phase
  logo