Summary of Study ST002349

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001509. The data can be accessed directly via it's Project DOI: 10.21228/M8N71K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002349
Study TitleBiomolecular condensates create phospholipid-enriched microenvironments (Part 1)
Study TypeMetabolomes of in vitro synthesized condensates
Study SummaryProteins and RNA are able to phase separate from the aqueous cellular environment to form sub-cellular compartments called condensates. This process results in a protein-RNA mixture that is chemically distinct from the surrounding aqueous phase. Here we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and cellular metabolites and identified metabolites enriched in the condensate phase. These proteins included SARS-CoV-2 nucleocapsid, as well as low complexity domains of MED1 and HNRNPA1.
Institute
Cornell University
DepartmentDepartment of Pharmacology
LaboratoryDr. Samie Jaffrey
Last NameDumelie
First NameJason
Address1300 York Ave, LC-524, New York City, NY
Emailjdumes98@gmail.com
Phone6465690174
Submit Date2022-11-04
Raw Data AvailableYes
Raw Data File Type(s)mzdata.xml
Analysis Type DetailLC-MS
Release Date2023-03-01
Release Version2
Jason Dumelie Jason Dumelie
https://dx.doi.org/10.21228/M8N71K
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004095 AN004096
Analysis type MS MS
Chromatography type Normal phase Normal phase
Chromatography system Agilent Model 1290 Infinity II liquid chromatography system Agilent Model 1290 Infinity II liquid chromatography system
Column Cogent Diamond Hydride (150 × 2.1 mm, 4um) Cogent Diamond Hydride (150 × 2.1 mm, 4um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Agilent 6550 QTOF Agilent 6550 QTOF
Ion Mode POSITIVE NEGATIVE
Units Ion counts Ion counts

Chromatography:

Chromatography ID:CH003033
Chromatography Summary:Tissue extracts were analyzed by LC/MS as described previously, using a platform comprised of an Agilent Model 1290 Infinity II liquid chromatography system coupled to an Agilent 6550 iFunnel time-of-flight MS analyzer. Chromatography of metabolites utilized aqueous normal phase (ANP) chromatography on a Diamond Hydride column (Microsolv). Mobile phases consisted of: (A) 50% isopropanol, containing 0.025% acetic acid, and (B) 90% acetonitrile containing 5 mM ammonium acetate. To eliminate the interference of metal ions on chromatographic peak integrity and electrospray ionization, EDTA was added to the mobile phase at a final concentration of 5 µM. The following gradient was applied: 0-1.0 min, 99% B; 1.0-15.0 min, to 20% B; 15.0 to 29.0, 0% B; 29.1 to 37min, 99% B.
Instrument Name:Agilent Model 1290 Infinity II liquid chromatography system
Column Name:Cogent Diamond Hydride (150 × 2.1 mm, 4um)
Solvent A:50% isopropanol, containing 0.025% acetic acid
Solvent B:90% acetonitrile containing 5 mM ammonium acetate
Chromatography Type:Normal phase
  logo