Summary of Study ST001119

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000750. The data can be accessed directly via it's Project DOI: 10.21228/M8QX2G This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001119
Study TitleQuantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability
Study SummaryCancer cell metabolism is heavily influenced by microenvironmental factors, including nutrient availability. Therefore, knowledge of microenvironmental nutrient levels is essential to understand tumor metabolism. To measure the extracellular nutrient levels available to tumors, we developed a quantitative metabolomics method to measure the absolute concentrations of >118 metabolites in plasma and tumor interstitial fluid, the extracellular fluid that perfuses tumors. Comparison of nutrient levels in tumor interstitial fluid and plasma revealed that the nutrients available to tumors differ from those present in circulation. Further, by comparing interstitial fluid nutrient levels between autochthonous and transplant models of murine pancreatic and lung adenocarcinoma, we found that tumor type, anatomical location and animal diet affect local nutrient availability. These data provide a comprehensive characterization of the nutrients present in the tumor microenvironment of widely used models of lung and pancreatic cancer and identify factors that influence metabolite levels in tumors.
Institute
University of Chicago
Last NameMuir
First NameAlexander
Address929 E 57th St. W GCIS 306, Chicago, Illinois, 60637, USA
Emailmuir.alexander@gmail.com
Phone5104950975
Submit Date2019-01-03
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2019-03-06
Release Version1
Alexander Muir Alexander Muir
https://dx.doi.org/10.21228/M8QX2G
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO001170
Collection Summary:Isolation of tumor interstitial fluid (TIF) TIF was isolated from tumors using a previously described centrifugal method (Eil et al., 2016; Haslene-Hox et al., 2011; Ho et al., 2015; Wiig et al., 2003). Briefly, tumor bearing animals were euthanized by cervical dislocation and tumors were rapidly dissected from the animals. Dissections took <1 min. to complete. Blood was collected from the same animal via cardiac puncture, and was immediately placed in EDTA-tubes (Sarstedt, North Rhine-Westphalia, Germany) and centrifuged at 845 x g for 10 minutes at 4°C to separate plasma. Plasma was frozen in liquid nitrogen and stored at -80°C until further analysis. Tumors were then weighed and briefly rinsed in room temperature saline (150mM NaCl) and blotted on filter paper (VWR, Radnor, PA, 28298-020). The entire process of preparing the tumor prior to isolation of TIF took ~2 min. The tumors were then put onto 20µm nylon filters (Spectrum Labs, Waltham, MA, 148134) affixed atop 50mL conical tubes, and centrifuged for 10 min. at 4°C at 106 x g. TIF was then collected from the conical tube, frozen in liquid nitrogen and stored at -80°C until further analysis.
Sample Type:Interstitial Fluid
  logo