Summary of Study ST002328

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001492. The data can be accessed directly via it's Project DOI: 10.21228/M8VX2Q This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002328
Study TitleMetabolome and transcriptome analysis of oral mucosa of HIV+ patients reveal a role for polyamine metabolic pathway in T cell dysfunction
Study SummaryMetabolic changes of immune cells contribute to both physiological and pathophysiological outcomes of immune reactions. How viruses alter the metabolic states of mucosal T cells and the precise mechanisms underlying the persisting immune dysfunction during chronic viral infections are key questions that have not been fully addressed. Here, by comparing transcriptome and salivary metabolome profiles of the uninfected individuals and people living with HIV (PLWH) on treatment, we found a role of polyamine metabolism in immune perturbations of the oral mucosa of HIV+ patients. Flow cytometry analysis confirmed the higher expression of ornithine decarboxylase (ODC-1) and eukaryotic translation initiation factor 5A (EIF5A), the polyamine metabolism intermediates in CD4+ T cells in PLWH. Mechanistic studies using an in vitro human tonsil organoid infection model revealed that HIV infection of activated T cells also resulted in increased polyamine synthesis, which was dependent on the activities of caspase-1, IL-1β, and ODC-1. HIV-1 also led to elevated dysfunctional regulatory T cells (TregDys) /Thelper 17 (Th17) cell ratios as well as heightened expression of ODC-1, EIF5A, and hypusinated EIF5A. Blockade of caspase-1, ODC-1, and EIF5A hypusination and not HIF-1⍺ or NLRP3 reversed the frequency of TregDys showing the direct impact of polyamine pathway in Treg dysfunction during HIV-1 infection. The addition of exogenous polyamines increased TregDys percentages independent of HIV-1 infection in vitro. Finally, oral mucosal TregDys/Th17 ratios and CD4 hyperactivation positively correlated with the increases in salivary putrescine levels, which were found to be elevated in the saliva of PLWH. Thus, by revealing the role of aberrantly increased polyamine synthesis during HIV infection, our study unveils a new mechanism by which chronic viral infections could drive distinct T cell effector programs and Treg dysfunction.
Institute
Case Western Reserve University
DepartmentBiological Sciences
LaboratoryPushpa Pandiyan
Last NamePandiyan
First NamePushpa
AddressDepartment of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, 44106
Emailpxp226@case.edu
Phone216-269-2939
Submit Date2022-08-29
Num Groups2
Total Subjects66
Num Males41
Num Females25
PublicationsUnder revision
Raw Data AvailableYes
Raw Data File Type(s)raw(Waters)
Analysis Type DetailLC-MS
Release Date2022-12-01
Release Version1
Pushpa Pandiyan Pushpa Pandiyan
https://dx.doi.org/10.21228/M8VX2Q
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO002408
Collection Summary:Samples were collected in 50 mL sterile centrifuge tubes and immediately stored at −80°C. 100 μl frozen aliquots of human saliva samples were processed for metabolite extraction liquid chromatography-mass spectrometry (LC-MS) analysis commercially by Creative Proteomics.
Collection Protocol Filename:Collection_protocol.pdf
Sample Type:Saliva
Storage Conditions:-80℃
  logo