Summary of Study ST003050
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001899. The data can be accessed directly via it's Project DOI: 10.21228/M88147 This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.
Study ID | ST003050 |
Study Title | Plasma instead of serum avoids critical confounding of clinical metabolomics studies by platelets (Part 1/3 - Plasma and serum eicosadomics) |
Study Summary | Metabolomics is an emerging and powerful molecular profiling method supporting clinical investigations. Serum and plasma are commonly used without rational prioritization. Serum is collected after blood coagulation, a complex biochemical process involving active platelet metabolism. This may affect the metabolome and increase the variance as platelet counts and function may vary substantially in individuals. A multi-omics approach systematically investigating the suitability of serum and plasma for clinical studies demonstrated that metabolites correlated well (n=461, R2=0.991), whereas lipid mediators (n=104, R2=0.906) and proteins (n=322, R2=0.860) differed substantially between specimen. Independently, analysis of platelet releasates identified most biomolecules significantly enriched in serum when compared to plasma. A prospective, randomized, controlled parallel group metabolomics trial with acetylsalicylic acid administered for 7 days demonstrated that the apparent drug effects significantly differ depending on analyzed specimen. Only serum analyses of healthy individuals suggested a significant downregulation of TXB2 and 12-HETE, which were specifically formed during coagulation in vitro. Plasma analyses reliably identified acetylsalicylic acid effects on metabolites and lipids occurring in vivo such as a decrease in polyunsaturated fatty acids. The present data suggests that plasma should be preferred above serum for clinical metabolomics studies as the serum metabolome may be substantially confounded by platelets. |
Institute | University of Vienna |
Department | Department of Analytical Chemistry |
Laboratory | Gerner lab |
Last Name | Hagn |
First Name | Gerhard |
Address | Währingerstraße 38, 1090 Vienna, Austria |
gerhard.hagn@univie.ac.at | |
Phone | +43 1 4277 52375 |
Submit Date | 2024-01-17 |
Raw Data Available | Yes |
Raw Data File Type(s) | raw(Thermo) |
Analysis Type Detail | LC-MS |
Release Date | 2024-04-12 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Collection:
Collection ID: | CO003158 |
Collection Summary: | SERUM/PLASMA: Blood samples were obtained at baseline and after 7 days intake of the study medication. On both study days two blood samples using 6 mL K3EDTA and serum collection tubes (both Vacuette, Greiner Bio-One GmbH, Kremsmünster, Austria) were obtained from each subject. EDTA-anticoagulated tubes were carefully inverted two times after blood draw and centrifuged immediately at room temperature at 2000 g for 10 min. In contrast, filled serum tubes were carefully inverted after blood draw and placed to sit upright for 15 to 30 minutes to allow clot formation. Then, tubes were centrifuged at room temperature at 2000 g for 10 min. Directly after centrifugation, 500 µL of plasma or serum, respectively, were transferred into pre-labelled Eppendorf safe-lock tubes and stored at -80°C until analysis. |
Sample Type: | Blood (serum) and blood (plasma) |