Summary of Study ST001860

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001173. The data can be accessed directly via it's Project DOI: 10.21228/M8341K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001860
Study TitleSpontaneous hydrolysis and spurious metabolic properties of α-ketoglutarate esters
Study TypeManuscript
Study Summary8988T cells treated with methyl acetate or 1 mM of alpha-ketoglutarate disodium salt or 1 mM of dimethyl-alpha-ketoglutarate for 3 hours prior to rapid quenching of metabolism and extraction of metabolites in 80% methanol (-80°C) containing internal QC standards.
Institute
University of British Columbia
Last NameParker
First NameSeth
Address950 W 28th Ave, 2099, Vancouver, British Columbia, Canada V6H 0B3
Emailseth.parker@bcchr.ca
Phone6048753121
Submit Date2021-05-26
Num Groups3
Total Subjects9
Num Malesn/a
Num Femalesn/a
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Analysis Type DetailLC-MS
Release Date2021-08-04
Release Version1
Seth Parker Seth Parker
https://dx.doi.org/10.21228/M8341K
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003015 AN003016
Analysis type MS MS
Chromatography type HILIC HILIC
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column SeQuant ZIC-pHILIC (150 x 2.1mm,5um) SeQuant ZIC-pHILIC (150 x 2.1mm,5um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap
Ion Mode NEGATIVE POSITIVE
Units ion counts ion counts

MS:

MS ID:MS002804
Analysis ID:AN003015
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS analyses were carried out by coupling the LC system to a Thermo Q Exactive HFTM mass spectrometer operating in heated electrospray ionization mode (HESI). Method duration was 30 min with a polarity switching data-dependent Top 5 method for both positive and negative modes. Spray voltage for both positive and negative modes was 3.5 kV and capillary temperature was set to 320oC with a sheath gas rate of 35, aux gas of 10, and max spray current of 100 μA. The full MS scan for both polarities utilized 120,000 resolution with an AGC target of 3e6 and a maximum IT of 100 ms, and the scan range was from 67-1000 m/z. Tandem MS spectra for both positive and negative mode used a resolution of 15,000, AGC target of 1e5, maximum IT of 50 ms, isolation window of 0.4 m/z, isolation offset of 0.1 m/z, fixed first mass of 50 m/z, and 3-way multiplexed normalized collision energies (nCE) of 10, 30, 80. The minimum AGC target was 1e4 with an intensity threshold of 2e5. All data were acquired in profile mode. The resulting ThermoTM RAW files were read with ThermoFisher CommonCore RawFileReader, and an in-house python script (Skeleton) was used for peak detection and quantification of all internal standards and sample peaks based on a previously established library of metabolite retention times and accurate masses adapted from the Whitehead Institute, and verified with authentic standards and/or high resolution MS/MS spectral manually curated against the NIST14MS/MS and METLIN (2017) tandem mass spectral libraries.
Ion Mode:NEGATIVE
  
MS ID:MS002805
Analysis ID:AN003016
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS analyses were carried out by coupling the LC system to a Thermo Q Exactive HFTM mass spectrometer operating in heated electrospray ionization mode (HESI). Method duration was 30 min with a polarity switching data-dependent Top 5 method for both positive and negative modes. Spray voltage for both positive and negative modes was 3.5 kV and capillary temperature was set to 320oC with a sheath gas rate of 35, aux gas of 10, and max spray current of 100 μA. The full MS scan for both polarities utilized 120,000 resolution with an AGC target of 3e6 and a maximum IT of 100 ms, and the scan range was from 67-1000 m/z. Tandem MS spectra for both positive and negative mode used a resolution of 15,000, AGC target of 1e5, maximum IT of 50 ms, isolation window of 0.4 m/z, isolation offset of 0.1 m/z, fixed first mass of 50 m/z, and 3-way multiplexed normalized collision energies (nCE) of 10, 30, 80. The minimum AGC target was 1e4 with an intensity threshold of 2e5. All data were acquired in profile mode. The resulting ThermoTM RAW files were read with ThermoFisher CommonCore RawFileReader, and an in-house python script (Skeleton) was used for peak detection and quantification of all internal standards and sample peaks based on a previously established library of metabolite retention times and accurate masses adapted from the Whitehead Institute, and verified with authentic standards and/or high resolution MS/MS spectral manually curated against the NIST14MS/MS and METLIN (2017) tandem mass spectral libraries.
Ion Mode:POSITIVE
  logo