Summary of Study ST001954

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001241. The data can be accessed directly via it's Project DOI: 10.21228/M89996 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001954
Study TitleA pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s Ataxia
Study SummaryDisruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. An underappreciated source of damage to Fe-S clusters are cuprous (Cu1+) ions. Since histone H3 enzymatically produces Cu1+ to support copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3-mediated Cu1+ toxicity is a major determinant of cellular functional pool of Fe-S clusters. Inadequate Fe-S cluster supply, either due to diminished assembly as occurs in Friedreich’s Ataxia or defective distribution, causes severe metabolic and growth defects in S. cerevisiae. Decreasing Cu1+ abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster-dependent metabolism and growth. Our findings reveal a novel interplay between chromatin and mitochondria in Fe-S cluster homeostasis, and a potential pathogenic role for histone enzyme activity and Cu1+ in diseases with Fe-S cluster dysfunction.
Institute
University of California, Los Angeles
Last NameMatulionis
First NameNedas
Address615 Charles E Young Dr S, BSRB 354-05
Emailnmatulionis@mednet.ucla.edu
Phone3302346450
Submit Date2021-10-21
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2021-11-12
Release Version1
Nedas Matulionis Nedas Matulionis
https://dx.doi.org/10.21228/M89996
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003179
Analysis type MS
Chromatography type HILIC
Chromatography system Thermo Vanquish Horizon
Column SeQuant ZIC-HILIC (150 x 2.1mm,5um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Orbitrap
Ion Mode UNSPECIFIED
Units Peak Area

MS:

MS ID:MS002957
Analysis ID:AN003179
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The UHPLC was coupled to a Q-Exactive (Thermo Scientific) mass analyzer running in polarity switching mode with spray-voltage=3.2kV, sheath-gas=40, aux-gas=15, sweep-gas=1, aux-gas-temp=350°C, and capillary-temp=275°C. For both polarities mass scan settings were kept at full-scan-range=(70-1000), ms1-resolution=70,000, max-injection-time=250ms, and AGC-target=1E6. MS2 data was also collected from the top three most abundant singly-charged ions in each scan with normalized-collision-energy=35. Each of the resulting “.RAW” files was then centroided and converted into two “.mzXML” files (one for positive scans and one for negative scans) using msconvert from ProteoWizard. These “.mzXML” files were imported into the MZmine 2 software package. Ion chromatograms were generated from MS1 spectra via the built-in Automated Data Analysis Pipeline (ADAP) chromatogram module and peaks were detected via the ADAP wavelets algorithm. Peaks were aligned across all samples via the Random sample consensus aligner module, gap-filled, and assigned identities using an exact mass MS1(+/-15ppm) and retention time RT (+/-0.5min) search of our in-house MS1-RT database. Peak boundaries and identifications were then further refined by manual curation. Peaks were quantified by area under the curve integration and exported as CSV files. If stable isotope tracing was used in the experiment, the peak areas were additionally processed via the R package AccuCor to correct for natural isotope abundance. Peak areas for each sample were normalized by the measured area of the internal standard trifluoromethanesulfonate (present in the extraction buffer) and by the number of cells present in the extracted well.
Ion Mode:UNSPECIFIED
  logo