Summary of Study ST002846

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001781. The data can be accessed directly via it's Project DOI: 10.21228/M8H432 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002846
Study TitleApolipoprotein E suppresses hyperlipidemia-driven hematopoiesis & inflammation by controlling mitochondrial metabolism
Study SummaryApolipoprotein E (ApoE) is recognized for its pleiotropic properties that suppress inflammation. We report that ApoE serves as a metabolic rheostat that regulates microRNA-control of glycolytic and mitochondrial activity in myeloid cells and hematopoietic stem & progenitor cells (HSPCs). ApoE expression in myeloid cells increases microRNA-146a, which reduces NF-κB-driven GLUT1 expression and glycolytic activity. In contrast, ApoE expression reduces microRNA-142a, which increases CPT1A expression, fatty acid oxidation, and oxidative phosphorylation. Improved mitochondrial metabolism by ApoE expression causes an enrichment of TCA cycle metabolites and NAD+ in macrophages. The study of mice with conditional ApoE expression supports the capacity for ApoE to foster microRNA-controlled immunometabolism. Modulation of microRNA-146a & -142a in the hematopoietic system of hyperlipidemic mice using RNA mimics & antagonists, respectively, improves mitochondrial metabolism, which suppresses inflammation and hematopoiesis. Our findings unveil an RNA regulatory network, controlled by ApoE, which exerts metabolic control over hematopoiesis and inflammation in hyperlipidemia.
Institute
Northwestern University
Last NameStoolman
First NameJoshua
Address303 E Superior Street, Chicago, IL 60611
Emailjoshua.stoolman@northwestern.edu
Phone7343559440
Submit Date2023-07-20
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-05-01
Release Version1
Joshua Stoolman Joshua Stoolman
https://dx.doi.org/10.21228/M8H432
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004664
Analysis type MS
Chromatography type HILIC
Chromatography system Thermo Fisher UltiMate 3000
Column Waters XBridge Amide (100 x 4.6mm, 3.5um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Plus Orbitrap
Ion Mode UNSPECIFIED
Units Peak area

MS:

MS ID:MS004411
Analysis ID:AN004664
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:A 15μl aliquot of the sample was used for high-resolution HPLC-tandem mass spectrometry. High-resolution HPLC-tandem mass spectrometry was performed on a Q-Exactive (ThermoFisher Scientific) in line with an electrospray source and an UltiMate 3000 (ThermoFisher Scientific) series HPLC consisting of a binary pump, degasser and autosampler outfitted with a XBridge Amide column (Waters; 4.6 mm × 100 mm dimension and a 3.5 μm particle size). The capillary of the electrospray ionization source was set to 275 °C, with sheath gas at 45 arbitrary units, auxiliary gas at 5 arbitrary units and the spray voltage at 4.0 kV. A mass/charge ratio scan ranging from 70 to 850 was used in positive/negative polarity switching mode. MS1 data were collected at a resolution The automatic gain control (AGC) target was set at 1 × 106, with a maximum injection time of 200 ms. The top five precursor ions were fragmented using the higher-energy collisional dissociation cell with normalized collision energy of 30% in MS2 at a resolution of 17,500. Data were acquired with Xcalibur software (v.4.1; ThermoFisher Scientific). Analysis was performed using MeatboAnalyst (v5.0) with peak area normalized to total ion count for each sample.
Ion Mode:UNSPECIFIED
  logo