Summary of Study ST000645

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000460. The data can be accessed directly via it's Project DOI: 10.21228/M8M027 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)
Study IDST000645
Study TitleEffects of Exercise on Dystrophic Mouse Muscle Amino Acids (part I)
Study SummaryWe will use male C57BL10, mdx, and nNOS-/- mice (n = 10 each group) to characterize the skeletal and cardiac muscle metabolomes. Half of the mice in each group will remain sedentary while the other half will be subjected to a single bout of treadmill exercise to exhaustion. Mice will be euthanized immediately postexercise and blood, hearts, and hindlimb muscles will be harvested and frozen as detailed in the General Methods. The heart and gastrocnemius, soleus, and quadriceps muscles of one hindlimb will be sent to the Mayo Clinic Metabolomics Resource Core. The heart and quadriceps muscle will be used for untargeted metabolomics profiling (LC/MS) while the gastrocnemius and soleus muscles will be used for targeted analyses of amino acids plus amino metabolites, non-esterified fatty acids, and citric acid cycle intermediates.
Institute
Mayo Clinic
Last NameThomas
First NameGail
AddressPenn State Hershey Heart and Vascular Institute Penn State College of Medicine 500 University Drive, MC H047 Hershey, PA 17033
Emailgthomas4@hmc.psu.edu
Phone717-531-0003, ext. 287087
Submit Date2017-06-23
Analysis Type DetailLC-MS
Release Date2019-07-17
Release Version1
Gail Thomas Gail Thomas
https://dx.doi.org/10.21228/M8M027
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR000460
Project DOI:doi: 10.21228/M8M027
Project Title:The dystrophic muscle metabolome: effects of exercise and NO donor therapy
Project Summary:In Duchenne and Becker muscular dystrophy (DMD, BMD), loss of the cytoskeletal protein dystrophin weakens the sarcolemma and disrupts cellular signaling, rendering the diseased muscles susceptible to contractioninduced damage. We and others have shown that loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma of dystrophin-deficient muscle causes functional muscle ischemia during exercise due to unopposed sympathetic vasoconstriction, thereby exacerbating fatigue and injury of the diseased muscles. Genetic and pharmacologic strategies targeting nNOSμ-NO signaling ameliorate functional muscle ischemia, as well as many other features of the dystrophic phenotype in the mdx mouse model of DMD/BMD. These findings suggest that the therapeutic benefit of NO likely extends beyond its vascular effects. A growing body of evidence indicates that NO directly influences muscle metabolism through effects on glucose transport as well as mitochondrial biogenesis and function. Both nNOS-/- mice and mdx mice exhibit muscle mitochondrial dysfunction, decreased resistance to fatigue, and exercise-induced muscle injury, suggesting a causal role of nNOSμ-NO deficiency. However, the specific metabolic changes resulting from reduced NO signaling that might render dystrophic muscle susceptible to fatigue and use-dependent injury remain poorly defined. Therefore, the goal of this pilot metabolomics study is to identify the unique biochemical profiles of skeletal and cardiac muscles of mdx mice to gain further mechanistic insight into the pathophysiological role of NO deficiency in muscular dystrophy. In Aim 1, we will characterize the skeletal and cardiac muscle metabolomes of mdx and nNOS-/- mice at rest and following a single bout of treadmill exercise with the goal of discovering common metabolic signatures caused by loss of NO signaling. In Aim 2, we will evaluate the potential of a NO donor drug that is under development as a therapeutic for DMD/BMD to improve the skeletal and cardiac muscle metabolomes in mdx mice. As a result of this pilot study, we hope to gain new understanding of the metabolic derangements in dystrophin-deficient muscle, insight into the therapeutic effects of NO replacement, and to identify new pathogenic mechanisms and putative therapeutic targets that will form the basis of future grant applications.
Institute:Mayo Clinic
Last Name:Thomas
First Name:Gail
Address:Penn State Hershey Heart and Vascular Institute Penn State College of Medicine 500 University Drive, MC H047 Hershey, PA 17033
Email:gthomas4@hmc.psu.edu
Phone:717-531-0003, ext. 287087
  logo