Summary of Study ST001692

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001088. The data can be accessed directly via it's Project DOI: 10.21228/M82H6Z This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001692
Study TitlePerfluoroalkyl substances and lipid composition in human milk
Study TypeCHEAR Study
Study SummaryPFAS are widely used in commercial products, and so humans have consistent exposure to them via oil- and water-resistant consumer products, fire- fighting foam, and industrial surfactants 1,2. The four PFASs commonly detected in blood, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) 3,4, are present in drinking water supplies both in northern New England as well as in 27 states nationally 5-8. Animal models shows that PFASs have can have effects on both the endocrine system and on adiposity 9-12. Epidemiological evidence shows that the presence of PFASs in maternal serum is associated with changes in maternal serum lipid and cholesterol composition 13,14. Similarly, serum levels of PFAS in adolescents have been associated with increases in serum cholesterol 15. These findings raise interesting questions about the association of PFAS and lipids in human milk. Research has shown the PFASs are present in human milk 16-18, and human milk is composed primarily of lipids 19. However, the relation between PFAS in milk and milk composition is unclear. The chemical and compositional profiles of breast milk are important because of the potential effects on the developing infant. The developmental origins of health and disease hypothesis suggests that early life exposures, such as toxins and nutrients via breast milk, have lasting effects on health, particularly obesity outcomes 20. In fact, some studies have shown associations between PFAS in maternal serum and infant birth weight and later childhood BMI 14,21. Our study will help to better illuminate the potential effects of maternal exposure to PFASs on infant exposure, both through direct transmission into breast milk and indirectly via influence on the lipid profiles of milk. To investigate how early life exposure to perfluoroalkyl substances (PFAS) may affect childhood health outcomes as mediated through breast milk, we propose the following specific aims: 1. Characterize the levels of PFAS in breast milk samples (n=495) in the NHBCS; 2. Characterize the lipid profiles of breast milk samples (n=495) in the NHBCS; 3. Test the relation between PFAS concentration and breast milk lipid profiles; and 4. Test the association between PFAS concentrations in maternal plasma collected during pregnancy with paired breast milk samples (n=100).
Institute
Icahn School of Medicine at Mount Sinai
DepartmentDepartment of Environmental Medicine and Public Health
LaboratoryMount Sinai CHEAR Untargeted Laboratory Hub
Last NameWalker
First NameDouglas
AddressAtran Building RM AB3-39, 1428 Madison Ave
Emaildouglas.walker@mssm.edu
Phone212-241-9891
Submit Date2021-02-10
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Chear StudyYes
Analysis Type DetailLC-MS
Release Date2022-03-11
Release Version1
Douglas Walker Douglas Walker
https://dx.doi.org/10.21228/M82H6Z
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001088
Project DOI:doi: 10.21228/M82H6Z
Project Title:A prospective study of critical environmental exposures in formative early life that impact lifelong health in rural US children: The New Hampshire Birth Cohort study
Project Summary:Major gaps exist in our knowledge of the health impacts of widespread and dramatically expanding exposures among children in the US. Children from rural regions are particularly understudied but may experience higher exposures to contaminants by drinking unregulated water; from household air pollution from wood stoves; and consequent to their rural and changing landscape (e.g., from climate change). This study aims to investigate new hypotheses and contribute critical exposomic data to address major gaps in our knowledge about early life environmental influences on child health and development in a rural US pregnancy cohort. As part of the ECHO Pediatric Cohorts, we are working with the NIEHS/EPA-supported New Hampshire Birth Cohort Study (NHBCS): a rural, ongoing pregnancy cohort that has accrued over 1,500 maternal-infant dyads with planned expansion to include 3,000 maternal-infant pairs. The study aims to: 1. Leverage the extant NHBCS to perform targeted and unsupervised metabolomic analyses of 1,000 cord blood samples and 250 paired maternal gestational blood samples, and assess associations with exposures, early growth, and the infant microbiome; 2. Expand data acquisition, sample collection and participant accrual to more precisely characterize exposures and timing of early life exposures; and 3. Extend follow-up to identify childhood exposures to contaminants (; the home environment; and medical exposures that relate to fetal and childhood growth, childhood obesity, and childhood respiratory infection, asthma, and pulmonary function. Additionally, novel statistical approaches will be used to determine the role of the intestinal and salivary microbiome as mediators of these effects. The collective expertise, methodologies, data, samples and preliminary results from this study will contribute to the planning of the broader ECHO Pediatric Cohorts initiative in order to advance our understanding of the environmental factors early in life that drive childhood and lifelong health.
Institute:Dartmouth College
Last Name:Romano
First Name:Megan
Address:One Medical Center Drive, Hinman Box 7927, Lebanon, NH, 03756
Email:megan.e.romano@dartmouth.edu
Phone:603-650-1837
Funding Source:National Institute of Environmental Health and Science (NIEHS), P42 ES007373; P20 ES018175/RD-83459901; P01 ES022832/RD 83544201; 4UH3OD023275
Contributors:Megan Romano, Rachel Criswell, Magaret Karagas, Douglas Walker
  logo