Summary of Study ST001856

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,, where it has been assigned Project ID PR001170. The data can be accessed directly via it's Project DOI: 10.21228/M8G98C This work is supported by NIH grant, U2C- DK119886.


Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001856
Study TitleThe metabolomic resetting effect of FG4592 in AKI to CKD transition (Part 2)
Study SummaryC57BL/6 mice were anesthetized using isoflurane. UIR was induced by clamping the right renal pedicle for 45 minutes and then releasing it to allow reperfusion, leaving the left kidney intact. Sham treated mice served as controls. Each mouse was located supine on a thermostatic pad (37 °C) to maintain its body temperature throughout the whole process. After 3 days of recovery, the mice received a daily intraperitoneal (i.p.) injection of FG4592 (10 mg/kg) or vehicle for 7 consecutive days. After treatment, the mice were sacrificed.Non-target metabolomics analysis was carried out using the kidney tissues of mice sacrificed at day 10 after UIR.
Children's Hospital of Nanjing Medical University
Last NameWeiyi
First NameChen
Address72 Guangzhou Road, Nanjing 210008, P. R. of China
Submit Date2021-07-01
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2021-07-07
Release Version1
Chen Weiyi Chen Weiyi application/zip

Select appropriate tab below to view additional metadata details:


Project ID:PR001170
Project DOI:doi: 10.21228/M8G98C
Project Title:Anti-anemia drug FG4592 retards the AKI to CKD transition by improving vascular regeneration and anti-oxidative capability
Project Type:MS analysis
Project Summary:Acute kidney injury (AKI) is a known risk factor for the development of chronic kidney disease (CKD), with no satisfactory strategy to prevent the progression of AKI to CKD. Damage to the renal vascular system and subsequent hypoxia are common contributors to both AKI and CKD. Hypoxia inducible factor (HIF) is reported to protect the kidney from acute ischemic damage and a novel HIF stabilizer, FG4592 (Roxadustat), has become available in the clinic as an anti-anemia drug. However, the role of FG4592 in the AKI-to-CKD transition remains elusive. In the present study, we investigated the role of FG4592 in the AKI-to-CKD transition induced by unilateral kidney ischemia-reperfusion (UIR). The results showed that FG4592, given to mice 3 days after UIR, markedly alleviated kidney fibrosis and enhanced renal vascular regeneration, possibly via activating the HIF-1α/vascular endothelial growth factor A (VEGFA)/VEGF receptor 1 (VEGFR1) signaling pathway and driving the expression of the endogenous antioxidant superoxide dismutase 2 (SOD2). In accordance with the improved renal vascular regeneration and redox balance, the metabolic disorders of the UIR mice kidneys were also attenuated by treatment with FG4592. However, the inflammatory response in the UIR kidneys was not affected significantly by FG-4592. Importantly, in the kidneys of CKD patients, we also observed enhanced HIF-1α expression which was positively correlated with the renal levels of VEGFA and SOD2. Together, these findings demonstrated the therapeutic effect of the anti-anemia drug FG-4592 in preventing the AKI-to-CKD transition related to ischemia and the redox imbalance.
Institute:Children's Hospital of Nanjing Medical University
Last Name:Weiyi
First Name:Chen
Address:72 Guangzhou Road, Nanjing 210008, P. R. of China