Summary of Study ST003198

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001988. The data can be accessed directly via it's Project DOI: 10.21228/M8RJ07 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003198
Study TitleUQ/RQ panel on human tissue
Study SummaryThe extraction of nonpolar metabolites from the tissues of human for analysis by LCMS to measure levels of Ubiquinone and Rhodoquinone.
Institute
UMass Chan Medical School
DepartmentProgram in Molecular Medicine
LaboratorySpinelli Lab
Last NameJerome
First NameMadison
Address55 N Lake Ave, Worcester, MA 01655
Emailmadison.jerome@umassmed.edu
Phone(508) 856-8989 ext. 68148
Submit Date2024-05-01
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2025-02-04
Release Version1
Madison Jerome Madison Jerome
https://dx.doi.org/10.21228/M8RJ07
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001988
Project DOI:doi: 10.21228/M8RJ07
Project Title:Rhodoquinone is an Electron Carrier in the Mammalian Electron Transport Chain
Project Summary:Ubiquinone (UQ), the only known electron carrier in the mammalian electron transport chain (ETC), delivers electrons to both oxygen (O2) and fumarate as terminal electron acceptors. As fumarate has a lower reduction potential than UQ, fumarate reduction is only thermodynamically favorable when ubiquinol, the reduced form of UQ, accumulates. Paradoxically, some tissues reduce fumarate without ubiquinol buildup, suggesting another mechanism enables fumarate reduction in mammals. Here, we identify rhodoquinone (RQ), a novel mammalian electron carrier that directs electrons to fumarate, instead of O2, as the favored terminal electron acceptor. RQ, which is undetectable in cultured mammalian cells, is enriched in tissues that catalyze fumarate reduction. RQ and UQ-directed ETC circuits support distinct programs of mitochondrial function. Through expression of a bacterial enzyme that converts UQ into RQ and development a novel RQ analog, we demonstrate that reprogramming the mammalian ETC from the UQ to RQ circuit renders cells highly resistant to hypoxia exposure. Thus, we establish RQ as a fundamental component of the mammalian ETC and unveil reprogramming the ETC to the RQ-circuit as a tractable strategy to treat hypoxia-related diseases.
Institute:UMass Chan Medical School
Department:Program in Molecular Medicine
Laboratory:Spinelli Lab
Last Name:UMass Chan
First Name:Spinelli Lab
Address:55 Lake Avenue North, Worcester, Massachusetts, 01605, USA
Email:spinellilab@gmail.com
Phone:(508) 856-8989 ext. 68148
  logo