Summary of Study ST003328

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR002070. The data can be accessed directly via it's Project DOI: 10.21228/M81Z4C This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003328
Study TitleIncreased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular lipidomics
Study SummaryLipidomics analysis was performed on directly induced neural stem/progenitor cell (iNSC) lines derived from fibroblasts of patients with progressive multiple sclerosis (PMS) versus age matched controls (AMC) treated or untreated with cholesterol synthesis inhibitor simvastatin.
Institute
University of Colorado Denver
Last NameHaines
First NameJulie
Address12801 E 17th Ave, Room 1303, Aurora, Colorado, 80045, USA
Emailjulie.haines@cuanschutz.edu
Phone3037243339
Submit Date2024-07-17
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-08-08
Release Version1
Julie Haines Julie Haines
https://dx.doi.org/10.21228/M81Z4C
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR002070
Project DOI:doi: 10.21228/M81Z4C
Project Title:Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis
Project Summary:Senescent neural progenitor cells have been identified in brain lesions of people with progressive multiple sclerosis (PMS). However, their role in disease pathobiology and contribution to the lesion environment remains unclear. By establishing directly induced neural stem/progenitor cell (iNSC) lines from PMS patient fibroblasts, we studied their senescent phenotype in vitro. Senescence was strongly associated with inflammatory signaling, hypermetabolism, and the senescence associated secretory phenotype (SASP). PMS-derived iNSCs displayed increased glucose-dependent fatty acid and cholesterol synthesis, which resulted in the accumulation of cholesteryl ester-enriched lipid droplets. An HMG-CoA reductase-mediated lipogenic state was found to induce secretion of the SASP in PMS iNSC conditioned media via transcriptional regulation by cholesterol-dependent transcription factors. SASP from PMS iNSCs induced neurotoxicity. Chemical targeting of HMG-CoA reductase using the cholesterol-lowering drug simvastatin (SV) reprogrammed the SASP and rescued neurotoxicity. Our findings suggest a disease-associated, cholesterol-related, hypermetabolic phenotype of PMS iNSCs that leads to neurotoxic signaling and is rescuable pharmacologically.
Institute:University of Colorado Denver
Laboratory:Lab of Angelo D'Alessandro in collaboration with lab of Stefano Pluchino (Univ of Cambridge)
Last Name:Haines
First Name:Julie
Address:12801 E 17th Ave, Room 1303, Aurora, Colorado, 80045, USA
Email:julie.haines@cuanschutz.edu
Phone:3037243339
  logo