Summary of Study ST003434
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001941. The data can be accessed directly via it's Project DOI: 10.21228/M8TM76 This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.
Study ID | ST003434 |
Study Title | Plasma concentrations of Fasnall in mice after a bolus of 10 mg/kg administered intraperitoneally. |
Study Type | Plasma metabolomics |
Study Summary | A single dose of 10 mg/kg (drug/body weight) Fasnall was injected intraperitoneally (~50 ul of solution in 1:1 DMSO:PBS), and plasma samples were collected. Blood was collected through a cardiac puncture. EDTA was used as an anticoagulant. |
Institute | Wistar Institute |
Department | Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center |
Laboratory | Schug's Lab |
Last Name | Mukha |
First Name | Dzmitry |
Address | 3601 Spruce St, Philadelphia, PA 19104, USA |
dmukha@wistar.org | |
Phone | +12154956903 |
Submit Date | 2024-08-21 |
Num Groups | 6 |
Total Subjects | 19 |
Publications | Submission Pending |
Raw Data Available | Yes |
Raw Data File Type(s) | mzML, wiff |
Analysis Type Detail | LC-MS |
Release Date | 2024-09-12 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Project:
Project ID: | PR001941 |
Project DOI: | doi: 10.21228/M8TM76 |
Project Title: | The shutdown of NADH oxidation via Respiratory Complex I mimics fatty acid biosynthesis inhibition |
Project Type: | LC-MS Quantitative Analysis |
Project Summary: | Proliferating cancer cells actively utilize anabolic processes for biomass production, including de novo biosynthesis of amino acids, nucleotides, and fatty acids. The key enzyme of the fatty acid biosynthesis pathway, fatty acid synthase (FASN), is widely recognized as a promising therapeutic target in cancer and other health conditions. Here, we establish a metabolic signature of FASN inhibition using a panel of pharmacological inhibitors (GSK2194069, TVB-2640, TVB-3166, C75, cerulenin, and Fasnall). We find that the activity of some commonly used FASN inhibitors is inconsistent with the metabolic signature of FASN inhibition (accumulation of malonate, succinate, malonyl coenzyme A, succinyl coenzyme A, and other metabolic perturbations). Moreover, we show that one of these putative FASN inhibitors, Fasnall, is a respiratory Complex I inhibitor that mimics FASN inhibition through NADH accumulation and consequent depletion of the tricarboxylic acid cycle metabolites. We demonstrate that Fasnall impairs tumor growth in several oxidative phosphorylation-dependent cancer models, including combination therapy-resistant melanoma patient-derived xenografts. Fasnall administration does not reproduce neurological side effects in mice reported for other Complex I inhibitors. Our results have significant implications for understanding the FASN role in human health and disease and provide evidence of therapeutic potential for Complex I inhibitors with fast systemic clearance. Our findings also highlight the continuing need for validation of small molecule inhibitors to distinguish high-quality chemical probes and to expand the understanding of their application. |
Institute: | Wistar Institute |
Department: | Molecular and Cellular Oncogenesis Program, Ellen and Ronald Caplan Cancer Center |
Laboratory: | Schug's Lab |
Last Name: | Mukha |
First Name: | Dzmitry |
Address: | 3601 Spruce St., Philadelphia, Pennsylvania 19104, USA |
Email: | dmukha@wistar.org |
Phone: | +12154956903 |
Funding Source: | This work was supported by grants from the National Institutes of Health (NIH) National Cancer Institute (NCI) DP2 CA249950-01 (Z.T.S.), NIH NCI P01 CA114046 (Z.T.S.), Melanoma Research Foundation 717173 (Z.T.S.), and Susan G. Komen CCR19608782 (Z.T.S.). |
Publications: | Submission Pending |
Contributors: | Dzmitry Mukha, Jena Dessain, Seamus O’Connor, Katherine Pniewski, Fabrizio Bertolazzi, Jeet Patel, Mary Mullins, Zachary T. Schug |