Summary of Study ST003035

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001888. The data can be accessed directly via it's Project DOI: 10.21228/M8P728 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003035
Study TitleCentral Transcriptional Regulator Controls Growth and Carbon Storage under High Light Stress in Photosynthetic Microalgae Model Strains
Study TypeAlgae
Study SummaryCarbon capture efficiency and biochemical storage are some of the primary drivers of photosynthetic productivity and by extension crop yield. To elucidate the mechanisms governing yield phenotypes and carbon allocation regulatory elements, we selected two microalgae strains as simplified models of photosynthetic crops. The Picochlorum celeri TG2 isolate is one of the fastest growing algae and in this work is juxtaposed to a closely related, slower growing, isolate, TG1, of the same species with less than 2% genomic divergence. Through the application of a comprehensive systems biology light-stress response study, we observed a stark difference in carbon assimilation and storage rates, with the slower growing isolate accumulating almost three times the amount of starch compared to the fast-growing isolate. We characterized the carbon storage rates and allocation dynamics, with metabolic bottlenecks, and transport rates of intermediates underlying the variations in growth and composition in high light using instationary 13C-fluxomics experiments. High light stress analysis of transcriptomic dynamics during acclimation of the strains from low to high light identified a widespread response with up to 73% the annotated gene set significantly differentially expressed after only 1 hour. Broad transcriptional regulatory control was inferred by a rapid depletion of a global diel-responsive transcription factor closely related to a circadian-regulator in plants, as the single most distinct transcription factor. Transferring this factor to the slower variant increased yield, specific growth rate, and carbohydrate accumulation of the selected engineered strain, providing further evidence for a coordinating regulatory mechanism for this complex phenotype.
Institute
National Renewable Energy Lab
DepartmentBiosciences
LaboratoryLaurens Lab
Last NameLaurens
First NameLieve
Address15013 Denver West Paekway, Golden, CO 80401
Emaillieve.laurens@nrel.gov
Phone+1 720-273-6534
Submit Date2023-12-18
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2024-04-26
Release Version1
Lieve Laurens Lieve Laurens
https://dx.doi.org/10.21228/M8P728
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP003155
Sampleprep Summary:Filters with biomass were kept on dry ice and 26 µL of 100 µM 1-13C Leucine was added as the internal standard. The label 1-13C Leucine was chosen as the internal standard since contribution of 1-13C Leucine from the transient labeling experiment was minimal in this time scale of the experiment. The filters were then folded and stored in 15 mL centrifuge tubes on dry ice. Extraction was performed by first adding 2 mL of precooled methanol followed by maceration till the filter was a pulp. This was followed by addition of 2 mL pre-cooled chloroform and further maceration. Once the extraction was complete with the methanol:chloroform mixture, 5 mL chloroform was added followed by 1 mL of 0.05% ammonium hydroxide (pH ~ 10.4) for phase separation. The extracts were then gently vortexed for a minimum of 15s followed by centrifugation at 4o C at 2500 g. The clear phase on the top was then removed and filtered using a syringe filter, diluted in acetonitrile (ACN) (3 ACN: 1 Extract) and transferred to LC-MS vials prior to injection.  
Sampleprep Protocol Filename:Sample_Extraction_AD.pdf
Processing Storage Conditions:Described in summary
Extraction Method:Methanol-Chloroform-Water
Extract Storage:-80℃
Sample Spiking:1-13C-Leucine
  logo