Summary of Study ST001289

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000871. The data can be accessed directly via it's Project DOI: 10.21228/M83M5X This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)
Study IDST001289
Study TitleRegulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses
Study SummaryTo investigate the relationship between hypercholesterolemia, foam cell formation and inflammation, we performed lipidomic and transcriptomic analyses of elicited peritoneal macrophages in wild type (WT) or LDL receptor knockout (LDLR KO) mice fed either a normal cholesterol, normal fat (NCNF) diet or a high cholesterol, high fat (HCHF) 'Western' style diet. The combination of the LDLR KO genotype and the HCHF diet results in the formation of macrophage foam cells in the elicited peritoneal macrophage population. Analysis of macrophages from the above four experimental groups revealed massive reprogramming of the lipidome in response to both diet and genotype. These studies confirmed and extended prior knowledge regarding the roles of SREBP and LXR signaling in cholesterol and fatty acid homeostasis. Unexpectedly, peritoneal macrophage foam cells exhibited a strongly 'deactivated' phenotype, with marked suppression of pro-inflammatory mediators that are normally characteristic of the inflammatory responses associated with atherosclerotic lesions. Many of these changes in gene expression and lipid metabolism appear to be related to the paradoxical accumulation of high levels of desmosterol, the last intermediate in the Bloch pathway of cholesterol biosynthesis. WT or LDLR KO mice were fed either a NCNF diet or a HCHF diet for twelve weeks to establish four experimental groups (WT-NCNF diet, WT-HCHF diet, KO-NCNF diet, and KO-HCHF diet). As expected, the combination of the HCHF diet and LDLR KO genotype resulted in a synergistic effect on serum lipid levels. Elicited peritoneal macrophages (92-96% F4/80-positive) were immediately prepared for analysis, thereby preserving in vivo gene expression and lipid profiles. Macrophages derived from LDLR KO mice fed the HCHF diet contained nearly four-fold more total cholesterol than cells from WT mice fed the same diet. Quantitative analysis of 245 lipid species revealed significant changes in nearly all major lipid classes. Using a two-way ANOVA model, we found that 176 (72%) of the lipids analyzed were significantly affected by the HCHF diet, 133 (54%) by the LDLR KO genotype, and 114 (46%) by interactions between the HCHF diet and LDLR KO genotype. Many of the observed interactions (60%) were synergistic.
Institute
LIPID MAPS
DepartmentMultiple
LaboratoryMultiple
Last NameFahy
First NameEoin
Address9500 Gilman, La Jolla, CA, 92093, USA
Emailefahy@ucsd.edu
Phone858-534-4076
Submit Date2019-12-17
PublicationsSpann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell. 2012 Sep 28;151(1):138-52. doi: 10.1016/j.cell.2012.06.054. PMID: 23021221; PMCID: PMC3464914.
Analysis Type DetailGC/LC-MS
Release Date2020-01-22
Release Version1
Eoin Fahy Eoin Fahy
https://dx.doi.org/10.21228/M83M5X
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Subject:

Subject ID:SU001361
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090
  logo