Summary of Study ST001938
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001227. The data can be accessed directly via it's Project DOI: 10.21228/M83Q5Z This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
Study ID | ST001938 |
Study Title | Metabolomics characterized concentration-dependent metabolic influence of magnesium on biofilm formation in Escherichia coli (Part1) |
Study Summary | Biofilms are broadly formed by a diversity of microorganisms that enable them to adapt stressful environments. Biofilms often impose harmful influences in many niches, as they can cause food contamination, antibiotics resistance, and environmental issues. However, eradicating biofilms remains difficult since the formation mechanism of biofilms are still incompletely clarified. In this study, we aimed at exploring the regulatory role of magnesium (Mg2+) on biofilm formation in Escherichia coli (E. coli) using phenotype visualization combined with targeted metabolomics method. We found that Mg2+ could exert significant influence on biofilm formation in a concentration-dependent manner by regulating phenotypic morphology and triggering metabolic modifications of biofilm. Phenotypic imaging revealed that increasing concentration of Mg2+ gradually inhibited biofilm formation, Mg2+ was observed to restore the microstructure of E. coli strain in biofilms to that in the relevant planktonic cells. In addition, our metabolomics analysis characterized 20 differential metabolites and associated 2 metabolic pathways including nucleotide metabolism and amino acid metabolism that were notably modified during biofilm formation under the treatments of different concentrations of Mg2+. Altogether, our work provides a novel insight into the influence of Mg2+ on biofilm formation at a metabolic level, which are implicated in the novel solution to disturb biofilm formation through the regulation of Mg2+ and functional metabolite interaction, then biofilms associated harmful impacts in different niches could be well tangled accordingly. |
Institute | Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University |
Department | Shanghai Center for Systems Biomedicine |
Laboratory | Lu Group |
Last Name | Lu |
First Name | Haitao |
Address | 800 Dongchuan RD. Minhang District, Shanghai, Shanghai, 200240, China |
haitao_lu@sjtu.edu.cn | |
Phone | 15221478139 |
Submit Date | 2021-09-07 |
Raw Data Available | Yes |
Raw Data File Type(s) | d |
Analysis Type Detail | LC-MS |
Release Date | 2021-11-04 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Subject:
Subject ID: | SU002016 |
Subject Type: | Bacteria |
Subject Species: | Escherichia coli |
Taxonomy ID: | 562 |