Summary of study ST000393

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000307. The data can be accessed directly via it's Project DOI: 10.21228/M8Z01Z This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Download all metabolite data  |  Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data (Contains raw data)
Study IDST000393
Study TitleLong-Chain Fatty Acid Combustion Rate Is Associated with Unique Metabolite Profiles in Skeletal Muscle Mitochondria
Study SummaryIncomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle.
Institute
University of California, Davis
DepartmentGenome and Biomedical Sciences Facility
LaboratoryWCMC Metabolomics Core
Last NameFiehn
First NameOliver
Address1315 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616
Emailofiehn@ucdavis.edu
Phone(530) 754-8258
Submit Date2016-05-06
Publicationshttp://dx.doi.org/10.1371/journal.pone.0009834
Raw Data AvailableYes
Raw Data File Type(s).peg
Analysis Type DetailGC-MS
Release Date2016-06-18
Release Version1
Oliver Fiehn Oliver Fiehn
https://dx.doi.org/10.21228/M8Z01Z
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Treatment:

Treatment ID:TR000428
Treatment Summary:Mitochondria (0.6 mg/ml) were supplied with three concentrations of palmitate corresponding to rates of β-oxidation: 1. low (2 µM) 2. medium (9 µM) 3. high (19 µM) Three ml aliquots of incubation medium [IM, (mM): KCl (120), HEPES (5), KH2PO4 (5), MgCl2 (5) and EGTA (1); pH 7.4] were supplemented with (mM) ATP (1), malate (0.05), coenzyme A (0.025), and carnitine (0.5) and added to 20-ml glass reaction vials. Solutions of low, medium and high palmitate concentrations were added to vials in a 6∶1 FA:BSA complex. Two additional incubations were performed as controls: 1. 0 µM palmitate 2. 9 µM palmitate + inhibitors
Treatment Protocol Filename:Long-Chain_Fatty_Acid_Metabolite_Profiles_in_Skeletal_Muscle_Mitochondria.PDF
Treatment Protocol Comments:The first control condition evaluated the metabolic profile of mitochondria oxidizing only malate, and included ATP, carnitine and CoA and ethanol (0.5%). The second control condition assessed effects of FA in the absence of complete oxidative catabolism, and consisted of malate, 9 µM palmitate, ATP, carnitine and CoA, and supplemented with the TCA cycle inhibitor malonate (10 mM) and the electron transport chain complex I inhibitor rotenone (5 µM)
  logo