Summary of study ST000658

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000461. The data can be accessed directly via it's Project DOI: 10.21228/M8G609 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Download all metabolite data  |  Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data (Contains raw data)
Study IDST000658
Study TitleOmega-6 and omega-3 oxylipins are implicated in soybean oil-induced obesity in mice (part IV)
Study SummaryIn this study we have compared the metabolic effects of conventional soybean oil to those of genetically modified Plenish soybean oil, that is low in linoleic acid and high in oleic acid. This work builds on our previous study showing that soybean oil, rich in polyunsaturated fats, is more obesogenic and diabetogenic than coconut oil, rich in saturated fats (PMID: 26200659). Here, in order to elucidate the mechanisms responsible for soybean oil induced obesity, we have performed the first ever metabolomics (in plasma and liver) and proteomics on the livers of mice fed the two soybean oil diets (plus those fed a high coconut oil and Viv chow diet). Our results show that the new high oleic soybean oil induces less obesity and adiposity than conventional soybean oil, but can cause hepatomegaly and liver dysfunction. Metabolomic analysis reveals that the hepatic and plasma metabolic profiles differ considerably between the two soybean oils. Hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway were found to correlate positively with obesity.
Institute
University of California, Davis
DepartmentGenome and Biomedical Sciences Facility
LaboratoryWCMC Metabolomics Core
Last NameFiehn
First NameOliver
Address1315 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616
Emailofiehn@ucdavis.edu
Phone(530) 754-8258
Submit Date2017-06-23
Raw Data AvailableYes
Raw Data File Type(s).cdf
Analysis Type DetailGC-MS
Release Date2017-11-20
Release Version1
Oliver Fiehn Oliver Fiehn
https://dx.doi.org/10.21228/M8G609
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR000461
Project DOI:doi: 10.21228/M8G609
Project Title:Omega-6 and omega-3 oxylipins are implicated in soybean oil-induced obesity in mice
Project Summary:In this study we have compared the metabolic effects of conventional soybean oil to those of genetically modified Plenish soybean oil, that is low in linoleic acid and high in oleic acid. This work builds on our previous study showing that soybean oil, rich in polyunsaturated fats, is more obesogenic and diabetogenic than coconut oil, rich in saturated fats (PMID: 26200659). Here, in order to elucidate the mechanisms responsible for soybean oil induced obesity, we have performed the first ever metabolomics (in plasma and liver) and proteomics on the livers of mice fed the two soybean oil diets (plus those fed a high coconut oil and Viv chow diet). Our results show that the new high oleic soybean oil induces less obesity and adiposity than conventional soybean oil, but can cause hepatomegaly and liver dysfunction. Metabolomic analysis reveals that the hepatic and plasma metabolic profiles differ considerably between the two soybean oils. Hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway were found to correlate positively with obesity.
Institute:University of California, Riverside
Department:Cell Biology and Neuroscience
Last Name:Sladek
First Name:Frances
Address:2115 Biological Sciences Building,University of California, Riverside, CA 92521-0314
Email:frances.sladek@ucr.edu
Phone:951-827-2264

Subject:

Subject ID:SU000839
Subject Type:Animal
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:C57/BL6N
Gender:Male
Animal Housing:SPF facility
Animal Light Cycle:12:12 h light-dark cycle
Animal Feed:Ad libitum
Animal Water:Ad libitum
Species Group:Mammal

Factors:

Subject type: Animal; Subject species: Mus musculus (Factor headings shown in green)

mb_sample_id local_sample_id GROUP_DESCRIPTION TIME_POINT
SA045102140715blvsa01_1HFD 24 weeks
SA045103140715blvsa26_1HFD 24 weeks
SA045104140715blvsa04_1HFD 24 weeks
SA045105140715blvsa03_1HFD 24 weeks
SA045106140715blvsa21_1HFD 24 weeks
SA045107140715blvsa09_1HFD 24 weeks
SA045108140715blvsa25_1HFD 24 weeks
SA045109140715blvsa12_1HFD 24 weeks
SA045110140715blvsa31_1LA-HFD 24 weeks
SA045111140715blvsa34_1LA-HFD 24 weeks
SA045112140715blvsa27_1LA-HFD 24 weeks
SA045113140715blvsa08_1LA-HFD 24 weeks
SA045114140715blvsa05_1LA-HFD 24 weeks
SA045115140715blvsa22_1LA-HFD 24 weeks
SA045116140715blvsa19_1LA-HFD 24 weeks
SA045117140715blvsa20_1LA-HFD 24 weeks
SA045118140715blvsa07_1PL-HFD 24 weeks
SA045119140715blvsa15_1PL-HFD 24 weeks
SA045120140715blvsa13_1PL-HFD 24 weeks
SA045121140715blvsa23_1PL-HFD 24 weeks
SA045122140715blvsa14_1PL-HFD 24 weeks
SA045123140715blvsa16_1PL-HFD 24 weeks
SA045124140715blvsa29_1PL-HFD 24 weeks
SA045125140715blvsa17_1PL-HFD 24 weeks
SA045126140715blvsa02_1Viv chow 24 weeks
SA045127140715blvsa06_1Viv chow 24 weeks
SA045128140715blvsa11_1Viv chow 24 weeks
SA045129140715blvsa18_1Viv chow 24 weeks
SA045130140715blvsa30_1Viv chow 24 weeks
SA045131140715blvsa32_1Viv chow 24 weeks
SA045132140715blvsa28_1Viv chow 24 weeks
SA045133140715blvsa10_1Viv chow 24 weeks
Showing results 1 to 32 of 32

Collection:

Collection ID:CO000833
Collection Summary:Liver tissue from mice on the diets for 24 weeks for metabolomic analysis was collected, rinsed in cold PBS, excess fluid was blotted with a kim-wipe and tissue was immediately snap frozen in liquid nitrogen before storage at -80°C. Blood was collected by cardiac puncture and centrifuged at 9 rcf for 5 min at 4°C. Plasma was stored immediately at -20°C.
Sample Type:Blood

Treatment:

Treatment ID:TR000853
Treatment Summary:Male C57/BL6N mice weaned at 3weeks of age were randomly assigned to one of the four diets: 1) VIV chow: normal rodent chow, low in fat and high in fiber 2) HFD: 40 kcal% coconut oil 3) LA-HFD: 40 kcal% total fat soybean oil diet (21 kcal% from coconut oil and 19 kcal% from soybean oil) 4) PL-HFD: 40 kcal% total fat Plenish oil diet (21 kcal% from coconut oil and 19 kcal% from Plenish oil)

Sample Preparation:

Sampleprep ID:SP000846
Sampleprep Summary:1. Switch on bath to pre-cool at –20°C (±2°C validity temperature range) 2. Gently rotate or aspirate the blood samples for about 10s to obtain a homogenised sample. 3. Aliquot 30μl of plasma sample to a 1.0 mL extraction solution. The extraction solution has to be prechilled using the ThermoElectron Neslab RTE 740 cooling bath set to -20°C. 4. Vortex the sample for about 10s and shake for 5 min at 4°C using the Orbital Mixing Chilling/Heating Plate. If you are using more than one sample, keep the rest of the sample on ice (chilled at <0°C with sodium chloride). 5. Centrifuge samples for 2min at 14000 rcf using the centrifuge Eppendorf 5415 D. 6. Aliquot two 450μL portions of the supernatant. One for analysis and one for a backup sample. Store the backup aliquot in -20°C freezer. 7. Evaporate one 450μL aliquots of the sample in the Labconco Centrivap cold trap concentrator to complete dryness. 8. The dried aliquot is then re-suspended with 450 μL 50% acetonitrile (degassed as given above). 9. Centrifuged for 2 min at 14000 rcf using the centrifuge Eppendorf 5415. 10. Remove supernatant to a new Eppendorf tube. 11. Evaporate the supernatant to dryness in the Labconco Centrivap cold trap concentrator. 12. Submit to derivatization.
Sampleprep Protocol Filename:SOP_Sample_preparation_of_blood_plasma_or_serum_samples_for_GCTOF_analysis.pdf

Combined analysis:

Analysis ID AN001287
Analysis type MS
Chromatography type GC
Chromatography system Agilent 6890N
Column Restek Rtx-5Sil MS (30 x 0.25mm, 0.25um)
MS Type EI
MS instrument type GC Ion Trap
MS instrument name Varian 210-MS GC Ion Trap
Ion Mode POSITIVE
Units Counts

Chromatography:

Chromatography ID:CH000903
Instrument Name:Agilent 6890N
Column Name:Restek Rtx-5Sil MS (30 x 0.25mm, 0.25um)
Column Pressure:7.7 PSI (initial condition)
Column Temperature:50 - 330°C
Flow Rate:1 ml/min
Injection Temperature:50°C ramped to 250°C by 12°C/s
Sample Injection:0.5 uL
Oven Temperature:50°C for 1 min, then ramped at 20°C/min to 330°C, held constant for 5 min
Transferline Temperature:230°C
Washing Buffer:Ethyl Acetate
Sample Loop Size:30 m length x 0.25 mm internal diameter
Randomization Order:Excel generated
Chromatography Type:GC

MS:

MS ID:MS001180
Analysis ID:AN001287
Instrument Name:Varian 210-MS GC Ion Trap
Instrument Type:GC Ion Trap
MS Type:EI
Ion Mode:POSITIVE
Ion Source Temperature:250°C
Ionization Energy:70eV
Mass Accuracy:Nominal
Scan Range Moverz:85-500
Scanning Cycle:17 Hz
Scanning Range:80-500 Da
Skimmer Voltage:1850
  logo