Summary of Study ST002031

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001288. The data can be accessed directly via it's Project DOI: 10.21228/M8771V This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002031
Study TitleIrradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Whole blood)
Study SummaryInvestigating the metabolic effects of radiation is critical to understand the impact of radiotherapy (e.g., for bone marrow irradiation prior to hematopoietic stem cell transplantation in the clinic or in laboratory studies), space travel, and exposure to environmental radiation. In patients undergoing hemopoietic stem cell transplantation, iron overload is a common risk factor for poor outcomes. Previous studies assert that both irradiation and iron independently modulate tryptophan and indole metabolism of the microbiome, which may in turn impact host immune response. However, no studies have interrogated the multi-organ effects of these treatments concurrently. Herein, we use a model that recapitulate transfusional iron overload, a condition often observed in chronically transfused patients with thalassemia, sickle cell disease, or myelodysplastic syndrome. We applied an omics approach to investigate the impact of both iron load and irradiation on the host metabolome. Our results revealed dose-dependent effects of irradiation in red blood cells (RBC), plasma, spleen, and liver energy and redox metabolism. Increases in polyamines and purine salvage metabolites were observed in organs with high oxygen consumption including the heart, kidney, and brain. Irradiation also impacted the metabolism of the duodenum, colon, and stool, suggesting a potential effect on the microbiome. Iron infusion affected the respose to radiation in the organs and blood, especially in RBC polyamine metabolism and spleen antioxidant metabolism, and affected glucose, sulfur (especially methionine and glutathione systems) and tryptophan metabolism in the liver, stool, and brain. Together, the results suggest that radiation impacts metabolism on a multi-organ level with a significant interaction of host iron status.
Institute
University of Colorado Anschutz Medical Campus
Last NameRoy
First NameMicaela
Address13001 E 17th Pl, Aurora, CO 80045
Emailmicaela.roy@cuanschutz.edu
Phone303-724-3339
Submit Date2021-12-27
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2022-01-21
Release Version1
Micaela Roy Micaela Roy
https://dx.doi.org/10.21228/M8771V
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001288
Project DOI:doi: 10.21228/M8771V
Project Title:Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs
Project Summary:Investigating the metabolic effects of radiation is critical to understand the impact of radiotherapy (e.g., for bone marrow irradiation prior to hematopoietic stem cell transplantation in the clinic or in laboratory studies), space travel, and exposure to environmental radiation. In patients undergoing hemopoietic stem cell transplantation, iron overload is a common risk factor for poor outcomes. Previous studies assert that both irradiation and iron independently modulate tryptophan and indole metabolism of the microbiome, which may in turn impact host immune response. However, no studies have interrogated the multi-organ effects of these treatments concurrently. Herein, we use a model that recapitulate transfusional iron overload, a condition often observed in chronically transfused patients with thalassemia, sickle cell disease, or myelodysplastic syndrome. We applied an omics approach to investigate the impact of both iron load and irradiation on the host metabolome. Our results revealed dose-dependent effects of irradiation in red blood cells (RBC), plasma, spleen, and liver energy and redox metabolism. Increases in polyamines and purine salvage metabolites were observed in organs with high oxygen consumption including the heart, kidney, and brain. Irradiation also impacted the metabolism of the duodenum, colon, and stool, suggesting a potential effect on the microbiome. Iron infusion affected the respose to radiation in the organs and blood, especially in RBC polyamine metabolism and spleen antioxidant metabolism, and affected glucose, sulfur (especially methionine and glutathione systems) and tryptophan metabolism in the liver, stool, and brain. Together, the results suggest that radiation impacts metabolism on a multi-organ level with a significant interaction of host iron status.
Institute:University of Colorado Anschutz Medical Campus
Last Name:Roy
First Name:Micaela
Address:13001 E 17th Pl, Aurora
Email:micaela.roy@cuanschutz.edu
Phone:9259977554

Subject:

Subject ID:SU002113
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090

Factors:

Subject type: Mammal; Subject species: Mus musculus (Factor headings shown in green)

mb_sample_id local_sample_id Treatment Radiation Dose
SA19125649IV iron Gy10
SA19125750IV iron Gy10
SA19125847IV iron Gy10
SA19125948IV iron Gy10
SA19126046IV iron Gy10
SA19126157IV iron Gy11
SA19126258IV iron Gy11
SA19126356IV iron Gy11
SA19126459IV iron Gy11
SA19126560IV iron Gy11
SA19126619IV iron Gy7
SA19126720IV iron Gy7
SA19126818IV iron Gy7
SA19126917IV iron Gy7
SA19127016IV iron Gy7
SA19127128IV iron Gy8
SA19127229IV iron Gy8
SA19127330IV iron Gy8
SA19127426IV iron Gy8
SA19127527IV iron Gy8
SA19127637IV iron Gy9
SA19127739IV iron Gy9
SA19127840IV iron Gy9
SA19127936IV iron Gy9
SA19128038IV iron Gy9
SA1912816IV iron no irradiated
SA1912827IV iron no irradiated
SA1912838IV iron no irradiated
SA19128410IV iron no irradiated
SA1912859IV iron no irradiated
SA19128641Saline Gy10
SA19128744Saline Gy10
SA19128845Saline Gy10
SA19128943Saline Gy10
SA19129042Saline Gy10
SA19129151Saline Gy11
SA19129253Saline Gy11
SA19129354Saline Gy11
SA19129455Saline Gy11
SA19129552Saline Gy11
SA19129615Saline Gy7
SA19129714Saline Gy7
SA19129813Saline Gy7
SA19129911Saline Gy7
SA19130025Saline Gy8
SA19130122Saline Gy8
SA19130224Saline Gy8
SA19130323Saline Gy8
SA19130421Saline Gy8
SA19130532Saline Gy9
SA19130631Saline Gy9
SA19130735Saline Gy9
SA19130833Saline Gy9
SA19130934Saline Gy9
SA1913102Saline no irradiated
SA1913113Saline no irradiated
SA1913121Saline no irradiated
SA1913134Saline no irradiated
Showing results 1 to 58 of 58

Collection:

Collection ID:CO002106
Collection Summary:At day +4 post irradiation, mice were euthanized and blood was collected by cardiac puncture in heparinized syringe
Sample Type:Blood (whole)

Treatment:

Treatment ID:TR002125
Treatment Summary:After one week of acclimatization in a pathogen-free facility, cohorts of mice were retro-orbitally infused with phosphate buffer saline (PBS) or 12.5 mg of iron dextran (Henry Shein Animal Health, Dublin, OH), twice a week for 2 weeks for a total of 50 mg of iron. After 2 days of rest, mice were then divided in groups and irradiated with 7, 8, 9, 10, 11 Gy of C-137 (n=5 per group). Total dose was split in 2 doses 3 hours apart.

Sample Preparation:

Sampleprep ID:SP002119
Sampleprep Summary:A volume of 50μl of RBC aliquots was extracted in either 450μl, respectively of methanol:acetonitrile:water (5:3:2, v/v/v).29 After vortexing at 4°C for 30 min, extracts were separated from the protein pellet by centrifugation for 10 min at 10,000g at 4°C and stored at −80°C until analysis.

Combined analysis:

Analysis ID AN003301 AN003302
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Vanquish Thermo Vanquish
Column Phenomenex Kinetex C18 (150 x 2.1mm,2.6um) Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Ion Mode POSITIVE NEGATIVE
Units peak area top peak area top

Chromatography:

Chromatography ID:CH002440
Instrument Name:Thermo Vanquish
Column Name:Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
Chromatography Type:Reversed phase
  
Chromatography ID:CH002441
Instrument Name:Thermo Vanquish
Column Name:Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
Chromatography Type:Reversed phase

MS:

MS ID:MS003071
Analysis ID:AN003301
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Samples (10uL injection for cells, 20uL injection for SUPs) were introduced to the MS via electrospray ionization with the MS scanning in full MS mode (2 µscans) and ddMS2 (top15) over the range of 65-950 m/z. Technical replicates were injected every six to twelve samples to ensure instrument stability (Nemkov et al., 2019). Metabolites were manually selected integrated with Maven (Princeton University) in conjunction with the KEGG database. Peak quality was determined using blanks, technical mixes, and 13C abundance.
Ion Mode:POSITIVE
  
MS ID:MS003072
Analysis ID:AN003302
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Samples (10uL injection for cells, 20uL injection for SUPs) were introduced to the MS via electrospray ionization with the MS scanning in full MS mode (2 µscans) and ddMS2 (top15) over the range of 65-950 m/z. Technical replicates were injected every six to twelve samples to ensure instrument stability (Nemkov et al., 2019). Metabolites were manually selected integrated with Maven (Princeton University) in conjunction with the KEGG database. Peak quality was determined using blanks, technical mixes, and 13C abundance.
Ion Mode:NEGATIVE
  logo