Gly/TCA/nucleotide and NAD+ related metabolites Service Code: GTN

Summary: Profile of Central Metabolism, including glycolysis, pentose-phosphate shunt, TCA cycle and nucleotide pools. One step organic solvent extraction of cultured cells or tissues, separated on a 1mm x150mm HILIC column in a 35 min cycle. All analytes and Internal Standards are measured by ESI⁻ ionization on a LC-QTOF mass spectrometer and reported as uM normalized to wet tissue weight or cell proteins. CV's are generally 15%.

Container: Eppendorf Tube or equivalent Normal Volume: Plasma (100 ul) Tissue (50-100 mgs); Cells (2E7). Minimal Volume: Plasma (50 uL)Tissue (30 mg); Cells (~5E6) Special Handling: If human or primate, note any known presence of infectious agents. Sample Collection: Snap freeze by liquid nitrogen. For tissues, resect and snap-freeze as soon as practical in tared centrifuge tube. Provide both sample weight and tared vial weight on sample submission

Reference: Matthew A. Lorenz, Charles F. Burant, and Robert T. Kennedy (2011) "Reducing Time and Increasing Sensitivity in Sample Preparation for Adherent Mammalian Cell Metabolomics", *Anal. Chem.* 83(9): 3406–3414.

Analyte	Abbr.	Mol Formula	Rt	LOQ(uM)
Acetyl-CoA	aCoA	C ₂₃ H ₃₈ N ₇ O ₁₇ P ₃ S	20.70	0.1
Citrate/Isocitrate combined	Cit/i-Cit	$C_6H_8O_7$	19.00	0.1
Succinate	Suc	$C_4H_6O_4$	16.36	0.1
Malate	Mal	$C_4H_6O_5$	16.50	0.1
Glyceraldehyde-3-phosphate	G3P	$C_3H_7O_6P$	18.3	0.1
2-Phosphoglycerate/3-Phosphoglycerate combined	2PG/3PG	C ₃ H ₇ O ₇ P	19.30	0.1
Phosphoenolpyruvate	PEP	$C_3H_5O_6P$	19.80	0.1
Adenosine monophosphate	AMP	$C_{10}H_{14}N_5O_7P$	17.20	0.1
Adenosine diphosphate	ADP	$C_{15}H_{23}N_5O_{14}P_2$	20.00	0.1
Adenosine triphosphate	ATP	$C_{10}H_{16}N_5O_{13}P_3$	22.30	0.1
Flavin adenine dinucleotide	FAD	$C_{27}H_{33}N_9O_{15}P_2$	16.61	0.1
Nicotinamide adenine dinucleotide	NAD	$C_{21}H_{28}N_7O_{14}P_2$	13.80	0.1
Nicotinamide adenine dinucleotide, reduced	NADH	$C_{21}H_{29}N_7O_{14}P_2$	16.50	0.1
Nicotinamide adenine dinucleotide phosphate	NADP	$C_{21}H_{29}N_7O_{17}P_3$	19.00	0.1
Nicotinamide adenine dinucleotide phosphate, reduced	NADPH	$C_{21}H_{30}N_7O_{17}P_3$	21.00	0.1
Erythrose 4-phosphate*	E4P	$C_4H_9O_7P$	16.2	1
Ribulose 5-phosphate/Xylulose 5-phosphate/ribose-5-	R5P/X5P/		15.9	
phosphate combined*	Ru5P	C5H11O8P		0.1
6-phosphogluconate*	6PG	$C_6H_{13}O_{10}P$	18.80	0.1
Sedoheptulose 7-phosphate*	S7P	C ₇ H ₁₅ O ₁₀ P	16.1	0.1
Fructose-6-phosphate + glucose-6-phosphate	F6P/G6P	$C_6H_{13}O_9P$	16.81	0.1

Table I: Analytes reported. Others on special request:

Fructose-bisphosphate	FBP	$C_6H_{14}O_{12}P_2$	20.50	0.1
Nicotinic acid (NA),	NA	$C_6NH_5O_2$		
Nicotinic acid mononucleotide (NaMN)	NaMN	$C_{11}H_{15}N_2O_8P$		
Quinolinic acid (QA),	QA	C ₇ H ₅ NO ₄		
nicotinamide mononucleotide (NMN),	NMN	$C_{11}H_{15}N_2O_8P$		
nicotinamide (NAM),	NAM	$C_6H_6N_2O$		

*Metabolites are low concentrations and below detection limit in some samples.

Table II: Internal standards

Internal Standards	Source	Cat#	Metabolites	Rt
¹³ C ₂ -fumarate	sigma	606073	NAD , Suc, FAD, Sed	16.36
			Hexose-6-Phosphate,	19.00
¹³ C ₆ -citrate	sigma	606081	NADP,6PG, G3P	
	omicron		FBP,NADPH,PEP,2PG/3PG,	20.5
¹³ C ₆ -Fructose-bisphosphate	biochem ,	fru-028		
¹³ C ₁₀ , ¹⁵ N ₅ -ATP	sigma	645702-10MG	ATP, a-CoA, ADP	22.3
¹³ C ₁₀ , ¹⁵ N ₅ -AMP	sigma	650676	AMP, E4P,X5P/R5P, S7P,	17.200
¹³ C ₄ -L-Malic acid	<u>sigma</u>	750484	Mal, NADH	16.5
¹³ C ₆ -Fructose-6-phosphate			Hexose-6-Phosphate	16.80

Materials

- 1. Agilent 6520 QTOF with 1260 LC unit, chilled autosampler, with standard 54-well autosampler plate
- 2. Bullet Blender GOLD with appropriate beads and protocol for tissues to be analyzed OR: Branson Sonifier 450 probe sonicator (narrow tip) using 20% duty cycle
- 3. Vortexer
- 4. Refrigerated centrifuge, capable of 15,000g with eppendorf tube compatible rotor
- 5. Eppendorf Vacufuge
- 6. ice bucket, ice
- 7. micro-balance
- 8. prepared internal standard and authentic standards mix solutions.
- 9. eppendorf tubes (polypropylene)
- 10. LCMS grade water, acetonitrile, methanol, chloroform, ammonium acetate, acetic acid

Procedure:

Tissue Sample Preparation

- Weigh frozen tissue samples and transfer to labeled eppendorf tubes, record weight. Homogenize tissues using cooled Bullet Blender Gold or probe sonicator, as appropriate. Keep samples cool while homogenizing.
- 2. Add appropriate amount of extraction solution to all tubes, then vortex to mix.

- 3. Incubate 5 minutes on ice water, then vortex again. Incubate 5 more minutes, then vortex again.
- 4. Centrifuge 10 minutes at 15,000g, 4 °C.
- 5. Transfer supernatant into a clean, labeled autosampler vial for LC-MS analysis
- 6. Reserve remaining tissue sample/extract at -80°C until analysis is complete
- 7. Once analysis is complete, dry and lyophilized extracted tissue, weigh, measure protein content using the Bradford method.

Cell Sample Preparation

- 1. Put samples in a box with dry ice. Put extraction solvent on dry ice.
- 2. Working one plate at a time, remove plate from the cooler and place on a surface of regular ice.
- 3. Clean cell scraper with MeOH and kimwipe.
- 4. Add 1.5 mL of extraction solvent (750 uL twice) to the plate.
- 5. Scrape cells with cell scraper, then scrape solvent to one corner of the plate.
- 6. Transfer supernatant to a labeled 2mL eppendorf vial. Put vial on dry ice.
- 7. Repeat procedure with all additional eppendorf vials.
- 8. Centrifuge all vials at 15,000g for 10 minutes at 4 °C
- 9. Transfer 600 uL of supernatant to clean autosampler vials (no insert). Store samples in refrigerator; store remaining sample at -80 °C.

LC-MS procedure

- 1. LC column: Phenomenex Luna NH2 column, 1mm x 150mm
- 2. Mobile phase A: 5mM ammonium acetate in water, pH 9.9
- 3. Mobile phase B: LCMS-grade Acetonitrile
- 4. Gradient: 0min, 80%B, 15min, 0%B, 20min, 0%B, 35min, 80%B, flow rate: 75ul/min
- 5. Autosampler: 4°C, 10 uL injection
- Agilent 6520 Q-TOF: ESI⁻, 350 °C, drying gas 10l/min; ESI: 3500V Method: M006-1mmNH2-35min_neg.m or equivalent
- 7. Collect standard curve data first, then sample data if system is suitable.

Quantification:

Internal standard mixture is spiked in samples and calibration standards. External calibration curve is constructed from calibration standards and it is used to calculate metabolite concentrations in biological samples.