Samples		
Zou, EX00674, N= 8, LOC	: LC5420	
Extraction Solvent		
Extraction solvent: total). NOTE: 0.5ml for	mL of 8:1:1 (Methanol: Chloroform: H₂O) + μL 13C GlyTcaNuc IS (mL 6cm plate, 1.5ml for 10cm plate	
Ratio of 811 to 13C Internal standard mix = 50:1, which is same as in calibration standard preparation.		

- GLY/TCA STD mix 200μM. (200mM, 25 x 80ul of 12C metabolites: a-kg, oaa, cit, mal, fum, 2pg, g6p, FAD, F16,BP, g3p, g6p, pep, Lac, amp, adp, atp, sed, x5p, 6pg, r5p, e4p) (box F stored in -80°C)
- 2) NAD/ NADP/NADH STD 200µM
- 3) NADPH STD 200µM
- **4) GLY/TCA IS**: 13C 100μM
- 5) NAD STD 200µM

Standard Preparation (STD Mix)--LCMS

First make STD 7: 75 μL of GlyTcaNuc + 75 μL of NAD/NADP/NADH + 75 μL of NADPH + 525 μL 8:1:1 = final volume of 750 μL. Prep the following in microtubes

STD ID	[Final] μM	Vol. of Prior STD (μL)	Vol. of 8:1:1 (μL)	Transfer into glass insert (300μL)	Vol. (μL) of IS 100μM add to insert
STD 0	0	0	350	294	6
STD 1	0.3125	350 of STD 2	350	294	6
STD 2	0.625	350 of STD 3	350	294	6
STD 3	1.25	350 of STD 4	350	294	6
STD 4	2.5	350 of STD 5	350	294	6
STD 5	5	350 of STD 6	350	294	6
STD 6	10	350 of STD 7	350	294	6
STD 7	20	See above	525	294	6

In a separate microtube add 22.5 μ L of GlyTcaNuc + 22.5 μ L of NAD/NADP/NADH + 22.5 μ L of NADPH + 6 μ L of IS + 226.5 μ L 8:1:1 = 300 μ L [15 μ M]. This is a validation point for curve/ dilution competency. Transfer to autovial containing glass insert and run with curve.

Repeat curve for NAD compounds- excluding GLYTCA STDs.

Notes:

Sample Preparation

1) Place all samples on dry ice until extraction procedure has been completed.

2) While over wet ice add Extraction solvent (0.5ml for 6cm plate, 1.5ml for 10cm plate) containing Internal Standards (IS) to the plate, rock plate back and forth to allow chemical extraction to occur and release cells. Use a scraping device to complete cell release and homogenization (making sure to scrape entire plate).

- 3) Transfer entire solvent sample from plate to pre-labeled, clean microtube, vortex.
- 4) Keep eppendorf tubes at **4°C for 10min** to allow complete extraction, remove from 4°C repeat vortex.
- 5) **Centrifuge** all tubes at 14,000RPM for 10min in 4°C.
- 6) **Create a pooled** sample by transferring μ L of each sample to an autosampler vial with insert.
- 7) **Transfer 80µL** of supernatant to an autosampler vial (with insert) for LC-MS analysis. **Transfer 200µL** of supernatant to an autosampler vial (with no insert) for GC-MS analysis

MS Analysis

Q-Tof method:

Column: Luna Nh2 150x1mm column.

<u>MP A:</u> 5mM Ammonium Acetate in H₂O, pH 9.9, adjust with LC-MS grade Ammonium Hydroxide <u>MP B</u>: 100% Acetonitrile

QQQ method:

Column: Luna Nh2 150x1mm column.

<u>MP A:</u> 5mM Ammonium Acetate in H₂O, pH 9.9, adjust with LC-MS grade Ammonium Hydroxide <u>MP B</u>: 100% Acetonitrile

<u>Table I: Analytes reported with quantitative measurement</u> (Additional Gly-TCA metabolites (Lactate, Fumarate, Alpha ketoglutarate) may be obtained for an additional cost by selecting TCA-Supplement in MiCores.)

Analyte	Abbr.	Mol Formula	LOQ(uM)
Acetyl-CoA	aCoA	C22H28N7O17P2S	1
Citrate/Isocitrate combined	Cit/i-Cit	C ₆ H ₈ O ₇	1
Succinate	Suc	C ₄ H ₆ O ₄	1
Malate	Mal	$C_4H_6O_5$	1
2-Phosphoglycerate/3-Phosphoglycerate combined	2PG/3PG	C ₃ H ₇ O ₇ P	1
Phosphoenolpyruvate	PEP	$C_3H_5O_6P$	1
Adenosine monophosphate	AMP	$C_{10}H_{14}N_5O_7P$	1
Adenosine diphosphate	ADP	$C_{15}H_{23}N_5O_{14}P_2$	1
Adenosine triphosphate	ATP	$C_{10}H_{16}N_5O_{13}P_3$	1
Flavin adenine dinucleotide	FAD	$C_{27}H_{33}N_9O_{15}P_2$	1
Nicotinamide adenine dinucleotide	NAD	$C_{21}H_{28}N_7O_{14}P_2$	1
Nicotinamide adenine dinucleotide, reduced	NADH	$C_{21}H_{29}N_7O_{14}P_2$	1
Nicotinamide adenine dinucleotide phosphate	NADP	$C_{21}H_{29}N_7O_{17}P_3$	1
Nicotinamide adenine dinucleotide phosphate, reduced	NADPH	$C_{21}H_{30}N_7O_{17}P_3$	1
Erythrose 4-phosphate	E4P	C ₄ H ₉ O ₇ P	1
Ribulose 5-phosphate/Xylulose 5-phosphate/ribose- 5-phosphate combined	R5P/X5P/Ru5P	C ₅ H ₁₁ O ₈ P	1
6-phosphogluconate	6PG	$C_6H_{13}O_{10}P$	1
Sedoheptulose 7-phosphate	S7P	$C_7 H_{15} O_{10} P$	1
Fructose-6-phosphate + glucose-6-phosphate	F6P/G6P	$C_6H_{13}O_9P$	1
Fructose-bisphosphate	FBP	$C_6H_{14}O_{12}P_2$	1

NOTE: Metabolites in this assay may be below the detection limit in some samples, especially plasma and samples with less than 3 million cells.

Table II: Additonal metabolites reported for most cell or tissue samples in the TCA Plus assay as relative abundance

	Alanine		
Alanine and Aspartate Metabolism	Asparagine		
	Aspartate		
Aminosugar Metabolism	N-Acetyl-glucosamine-1-phosphate		
Creatine Metabolism	Creatinine*		
Food Component/Plant	Gluconate		
Glutamate Metabolism	Glutamate		
	Glutamine		
Glutathione Metabolism	Glutathione, oxidized (GSSG)		
	Glutathione, reduced (GSH)		
Glycine, Serine and Threonine Metabolism	3-Phospho-serine		
Glycine, Serine and Threonine Metabolism	Serine		
Glycolysis, Gluconeogenesis, and Pyruvate	Threonine		
Metabolism	Hexose (glucose etc.)		
Histidine Metabolism	Histidine		
Leucine, Isoleucine and Valine Metabolism	Valine		
Long Chain Fatty Acid	Oleic acid		
Long Chain Fatty Asid	Palmitic acid		
Long Chain Fally Acid	Stearic acid		
	Lysine		
Methionine, Cysteine, SAM and Taurine			
Metabolism	Methionine		
Methionine, Cysteine, SAM and Taurine	Taurine		
Metabolism			
Nucleotide Sugar	UDP-D-glucose		
Nucleotide Sugar	UDP-D-glucuronate		
Oxidative Phosphorylation	UDP-N-acetyl-D-glucosamine		
	Acetylphosphate*		
Pantothenate and CoA Metabolism	Pantothenate*		
Phenylalanine and Tyrosine Metabolism	Phenylalanine		
Phenylalanine and Tyrosine Metabolism	Tyrosine		
Purine Metabolism, (Hypo)Xanthine/Inosine	Incoine El menerole conhecte (INAD)		
Containing	Inosine 5 -monoprosphate (IMP)		
Purine Wietabolism, (HypojXanthine/Inosine	Vanthing		
Purine Metabolism, Guanine containing	Automite Guanasina diabasabata		
Pyrimidine Metabolism, Cytidine containing	Outiding monophosphate		
Pyrimidine Metabolism, Cytidine containing	Uridine 5'-dinhosphate (UDP)		
	Uridine 5'-monophosphate (UMP)		
Pyrimidine Metabolism, Uracil containing	Uridine 5'-trinhosphate (UTD)		
Tryptophan Metabolism			
	Πγρεορπαπ		

Table II cont'd:

	3-Phospho-serine		
Glycine, Serine and Threonine Metabolism	Serine		
	Threonine		
Glycolysis, Gluconeogenesis, and Pyruvate Metabolism	Hexose (glucose etc.)		
Histidine Metabolism	Histidine		
Leucine, Isoleucine and Valine Metabolism	Valine		
	Oleic acid		
Long Chain Fatty Acid	Palmitic acid		
	Stearic acid		
Lysine Metabolism	Lysine		
Methionine, Cysteine, SAM and Taurine	Methionine		
Metabolism	Taurine		
	UDP-D-glucose		
Nucleotide Sugar	UDP-D-glucuronate		
	UDP-N-acetyl-D-glucosamine		
Oxidative Phosphorylation	Acetylphosphate*		
Pantothenate and CoA Metabolism	Pantothenate*		
Phenylalanine and Tyrosine Metabolism	Phenylalanine		
	Tyrosine		
Purine Metabolism (Hypo)Yanthine/Inosine	Inosine 5'-monophosphate (IMP)		
containing	Inosine		
	Xanthine		
Purine Metabolism, Guanine containing	Guanosine diphosphate		
Pyrimidine Metabolism, Cytidine containing	Cytidine monophosphate		
	Uridine 5'-diphosphate (UDP)		
Pyrimidine Metabolism, Uracil containing	Uridine 5'-monophosphate (UMP)		
	Uridine 5'-triphosphate (UTP)		
Tryptophan Metabolism	Tryptophan		

NOTE: Metabolites in this assay may be below the detection limit in some samples, especially plasma and samples with less than 3 million cells; Compounds show with * are usually only detected in tissue.