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Abstract

Adenocarcinoma, a type of non–small cell lung cancer, is the
most frequently diagnosed lung cancer and the leading cause of
lung cancer mortality in the United States. It is well documented
that biochemical changes occur early in the transition fromnormal
to cancer cells, but the extent to which these alterations affect
tumorigenesis inadenocarcinomaremains largely unknown.Here-
in, we describe the application of mass spectrometry and multi-
variate statistical analysis in one of the largest biomarker research
studies to date aimed at distinguishing metabolic differences
between malignant and nonmalignant lung tissue. Gas chroma-
tography time-of-flight mass spectrometry was used to measure
462 metabolites in 39 malignant and nonmalignant lung tissue
pairs from current or former smokers with early stage (stage IA–IB)
adenocarcinoma. Statistical mixed effects models, orthogonal par-
tial least squares discriminant analysis and network integration,
were used to identify key cancer-associated metabolic perturba-

tions in adenocarcinoma compared with nonmalignant tissue.
Cancer-associated biochemical alterations were characterized by
(i) decreased glucose levels, consistent with theWarburg effect, (ii)
changes in cellular redox status highlighted by elevations in cys-
teine and antioxidants, alpha- and gamma-tocopherol, (iii) eleva-
tions in nucleotide metabolites 5,6-dihydrouracil and xanthine
suggestive of increased dihydropyrimidine dehydrogenase and
xanthine oxidoreductase activity, (iv) increased 50-deoxy-50-
methylthioadenosine levels indicative of reduced purine salvage
and increased de novo purine synthesis, and (v) coordinated eleva-
tions in glutamate and UDP-N-acetylglucosamine suggesting
increased protein glycosylation. The present study revealed distinct
metabolic perturbations associated with early stage lung adeno-
carcinoma, which may provide candidate molecular targets for
personalizing therapeutic interventions and treatment efficacy
monitoring. Cancer Prev Res; 8(5); 410–8. �2015 AACR.

Introduction
Lung cancer has been the leading cause of cancer death in the

United States and worldwide for many decades. Low dose spiral
computerized tomography (LDCT) is likely to become the first
approved screening and early detection test in the upcoming year,
but it is plagued by a high false-positive rate (1). There is a need to
develop complementary screening and early detection tools. A
blood-based "lung cancer" signature is an attractive solution.

Given that our knowledge of the molecular biology of smok-
ing-induced lung cancer has dramatically increased over the past
few years, this approach is plausible. To date, this effort has been
focused on the identification of genomic and proteomic signa-
tures with limited success. A broader strategy that incorporates
additional cancer traits is needed. It is well recognized that wide
coverage of cellular metabolism in cancer could help provide
valuable diagnostic biomarkers and potentially identify molecu-
lar drivers of tumorigenesis. Recent advances in mass spectrom-
etry have enabled comprehensivemetabolomic analyses of lipids,
carbohydrates, amino acids, and nucleotides within a variety of
biologicmatrices. Early evidence frommetabolomic investigation
of cancer (2) has identified many altered biochemical profiles.
However, to date, there have been few investigations of lung
cancer, and most studies have looked at blood plasma or were
limited by small sample sizes with mixed histologies (3–6).

In the current investigation, gas chromatography time-of-
flight mass spectrometry (GC-TOF) was used to measure 462
lipid, carbohydrate, amino acid, organic acid, and nucleotide
metabolites in 39 malignant and nonmalignant lung tissue
pairs from current or former smokers with early stage adeno-
carcinoma. This study cohort represents patient characteristics
and tumor histology most likely to be detected with LDCT
screening. We hypothesize that identification of cancer-induced
cellular and tissue level biochemical changes can offer a robust
method for identification of candidate circulating biomarkers
and improve our understanding of biochemical changes
involved in adenocarcinoma tumorigenesis.
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Materials and Methods
Sample acquisition

Deidentified malignant and adjacent nonmalignant lung
tissue was obtained from the New York University bioreposi-
tory. Residual tumor and adjacent nonmalignant tissue was
harvested from the resected lung after routine pathologic pro-
tocols were completed, following an approved Institutional
Review Board (IRB) protocol with patient consent. Two to
three tissue pieces were aliquoted into 1.5 mL Nunc vials, and
then immediately placed in liquid nitrogen. After transport in
liquid nitrogen, each vial was barcoded and stored at �80�C
until analyzed. All specimens were clinically annotated for age,
gender, race, histology, smoking status, pack-years, and stage of
disease. For this clinical study, samples were selected that came
from patients who met the following criteria: (i) current or
former smokers, (ii) adenocarcinoma histology, (iii) patholog-
ic stage IA or IB, and (iv) had understood and signed the IRB
consent form.

Tissue sample preparation
Each tissue sample was weighed to approximately 5 mg, and

samples were kept frozen while weighing. After weighing, the
sampleswere placed in a 2-mL round bottomEppendorf tube and
stored at�20�C. Two small stainless steel grinding balls and 1mL
of �20�C extraction solution (3:1 methanol:nano-pure water),
degassed by sonication, were added to the samples. The tubes
containing lung tissue, grinding balls, and extraction solution
were placed in a�80�C freezer for 1 hour. The samples were then
placed in a GenoGrinder 2010 for 5 minutes at 1,000 relative
centrifugal force (RCF). Next, the samples were placed into a
�20�C freezer for 30minutes to precipitate protein. Upon remov-
al from �20�C, samples were vortexed for 20 seconds and
centrifuged at 16,100 RCF for 10 minutes. The supernatant was
transferred to a clean 1.5-mL Eppendorf tube, which was imme-
diately centrifuged for 10minutes at 16,100 RCF. All supernatant
was transferred to a new 1.5-mL Eppendorf tube and dried to
completeness using a Labconco Centrivap.

Samples were derivatized by methoximation followed by
silylation for GC-TOF-MS analysis. Once dried, 10 mL of meth-
oxyamine hydrochloride (Aldrich: Cat. No. 226904) dissolved
in pyridine (Acros Organics Cat. No. 270970; 40 mg/mL) was
added to the samples. Samples were shaken at maximum speed
for 1.5 hours at 30�C. Fifty microliter N-Methyl-N-(trimethyl-
silyl)trifluoroacetamide) (MSTFA; Aldrich: Cat. No. 394866)
spiked with internal standard mixture of fatty-acid methyl
esters (FAME) was added, and samples were shaken at maxi-
mum speed for 30 minutes at 37�C. Samples were then placed
in the autosampler, and 0.5 mL of derivatized sample was
injected on the GC-TOF.

GC-TOF data collection and analysis
Samples were analyzed using GC-TOF mass spectrometry. The

study design was entered into the MiniX database (7). A Gerstel
MPS2 automatic liner exchange system (ALEX) was used to
eliminate cross-contamination from sample matrix occurring
between sample runs. Sample (0.5 mL) was injected at 50�C
(ramped to 250�C) in splitless mode with a 25-second splitless
time. An Agilent 6890 gas chromatograph was used with a 30-m
long, 0.25 mm inner diameter (i.d.) Rxi�-5Sil MS column with
0.25 mm 5% diphenyl film; an additional 10 m integrated guard

column was used (Restek; refs. 8–10). Chromatography was
performed at a constant flow of 1 mL/min, ramping the oven
temperature from 50�C to 330�C over 22 minutes. Mass spec-
trometry used a Leco Pegasus IV TOF mass spectrometer with
280�C transfer line temperature, electron ionization at�70V, and
an ion source temperature of 250�C. Mass spectra were acquired
from m/z 85–500 at 17 spectra/sec and 1850 V detector voltage.

Result files were exported to our servers and further processed
by our metabolomics BinBase database. All database entries in
BinBase were matched against the Fiehn mass spectral library of
1,200 authentic metabolite spectra using retention index and
mass spectrum information or the NIST11 commercial library.
Identified metabolites were reported if present in at least 50% of
the samples per study design group (as defined in the MiniX
database); output results were exported to the BinBase database
and filtered by multiple parameters to exclude noisy or inconsis-
tent peaks (10). Quantification was reported as peak height using
the unique ion as default (11).Missing values were replaced using
the raw data netCDF files from the quantification ion traces at the
target retention times, subtracting local backgroundnoise (7). The
unit norm normalization (12) was carried out on a sample-
specific basis to correct for analytical variance in total tissue mass
analyzed. Briefly, sample-wise metabolite intensities were
expressed as a ratio to the total ion intensity for all annotated
analytes. This is a simple and powerful normalization approach,
which, in the absence of appropriate analytical surrogates, can
account for a variety of analytical sources of variance (e.g.,
extraction or derivatization), but can also affect biologic inter-
pretation (13) and should be evaluated on a study-specific basis.
Daily quality controls, standard plasma obtained fromNIST, and
evaluation of signal intensities for FAME internal standards were
used to monitor instrument performance over the length of the
data acquisition.

Data analysis
Statistical analysis. Statistical analysis was implemented on
log2-transformed metabolite values using mixed effects models
to identify differentially regulated metabolites between adeno-
carcinoma and normal tissues. Mixed effects models were gener-
ated for observed metabolite values given patient age, gender,
pack-years of smoking history, and cancer status with patient
identifiers included as a random factor to account for the corre-
lation of measurements from the same patient. A c2 test was used
to assess the significance of metabolic differences through com-
parison of the full model to a reduced model not including a
cancer term. The significance levels (i.e., P values) were adjusted
formultiple hypothesis testing according to Benjamini andHoch-
berg (14) at a FDR of 5% (abbreviated pFDR < 0.05).

Multivariate modeling. Multivariate modeling was carried out
using orthogonal signal correction partial least squares discrim-
inant analysis (O-PLS-DA; ref. 15) to identify robust predictors of
metabolic changes in adenocarcinoma tumor compared with
nonmalignant lung tissue. O-PLS-DA modeling was conducted
on covariate-adjusted (gender, age, and packs of cigarettes
smoked per year), log2-transformed, and autoscaled data. The
39patients', tumor and control tissuepairs,were split between2/3
training and 1/3 test data sets. The training set was used to carry
out feature selection andmodel optimization, and thefinalmodel
performancewas determined bypredicting the class labels (tumor
or control) for the held out test set. Model latent variable (LV)
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number and orthogonal LV (OLV) number were selected using
leave-one-out cross-validation. A preliminary 2 OLV (2 total LV)
model was developed and used to carry out feature selection.
Feature selection was implemented to identify the top�10% (42
of 462) of all metabolic predictors for cancer. The full variable set
was filtered to retain metabolites that displayed significant cor-
relation with model scores (Spearman pFDR � 0.05; ref. 16) and
model loadings on OLV1 in the top 90th quantile in magnitude
(17).

The top 10% feature model was evaluated using Monte Carlo
training and testing cross-validation and permutation testing
(18). Internal training and testing were done by further splitting
the training set into 2/3 pseudo-training and 1/3 pseudo-test sets,
while preserving individual patients' tumor and control tissue
pairs. This was randomly repeated 100 times and used to estimate
the distributions for the O-PLS-DA model performance statistics:
the model fit to the training data (Q2) and root mean squared
error of prediction (RMSEP) for the test data. The probability of
achieving the model's predictive performance was estimated
through comparison of Q2 and RMSEP distributions to 100
randomly permuted models (random class labels), calculated by
replicating the internal training and testing procedures described
above. The described approach was also used to determinemodel
performance for the excluded (bottom90%) feature set (n¼420).

Optimized model classification performance was validated
through prediction of class labels for the originally held out test
set, and is reported as sensitivity, specificity, and the area under the
receiver operator characteristic curve.

Network analysis. Network analysis was used to investigate sta-
tistical and multivariate modeling results within a biochemical
context and to help estimate functional roles for structurally
unknown metabolites. A biochemical and chemical similarity
network (19) was developed for all measured metabolites with
KEGG (20) and PubChem CID (21) identifiers (n ¼ 178).
Enzymatic interactions were determined based on product–pre-
cursor relationships defined in the KEGG RPAIR database. Mole-
cules not directly participating in biochemical transformations,
but sharing many structural properties, based on PubChem
Substructure Fingerprints (22), were connected at a threshold of
Tanimoto similarity � 0.7.

A partial correlation network was calculated to analyze
empirical dependencies among metabolic discriminants
between adenocarcinoma tumor and nonmalignant lung tis-
sues. Partial correlations were calculated between covariate-
adjusted data (gender, age, and packs of cigarettes smoked per
year) for all structurally identified O-PLS-DA–selected features
(top 10% feature set). Metabolite relationships were deter-
mined based on significant FDR-adjusted (14) partial correla-
tions (pFDR � 0.05).

A mass spectral similarity and partial correlation network was
used to estimate relationships between covariate-adjusted anno-
tated and structurally unknown O-PLS-DA–selected features.
Mass spectral similarities were calculated based on cosine correla-
tions �0.75 of annotated and unknown metabolites electron
ionization mass spectral profiles (23). Partial correlations were
calculated between all known and unknown species and limited
two connections per unknown (pFDR � 0.05).

Network mapping was used in Cytoscape (24) to encode
statistical and multivariate modeling results through network
edge and node attributes.

Results
Paired tissue samples were obtained from 39 patients with

adenocarcinoma histology (Table 1). The majority of patients
were elderly white female former smokers. The average agewas 72
with a mean of 36 pack years; all patients were diagnosed with
stage IA or IB disease.

Metabolomic profiling was performed after extraction and
derivatization using GC-TOF mass spectrometry. A total of 462
compounds were measured, and 183 of these were annotated
with known molecular structures. Additional metabolite infor-
mation (retention time, mass spectra, etc.) and the proportion
and percentage of patient-matched comparisons in whichmetab-
olite levels were increased in tumors comparedwith normal tissue
are reported in Supplementary Table S4. A large number of
differences were found between normal and malignant tissue.
Mixed effect models were used to identify 70 significantly differ-
ent metabolites between nonmalignant and adenocarcinoma
tissues after adjusting for the FDR (pFDR < 0.05; Table 2). The
compounds were equally divided, with 35 increasing and 35
decreasing in tumor, compared with control tissue. A metabolo-
mic network was calculated to display enzymatic transformations
and structural similarities among the 183 structurally identified
compounds in the context of their relative changes between
adenocarcinoma tumor and nonmalignant tissue (Fig. 1). In
addition to the classical statistical approach, O-PLS-DA multivar-
iate classification modeling was used to select the top 10%
multivariate discriminants between cancer and control tissues.
Monte Carlo cross-validation and permutation testing were used
to validate themodels predictive performance for classification of
cancer versus control tissues (Supplementary Table S3). The top
metabolic changes between tumor and control tissues were com-
prised of 20 annotated (Table 2) and 22 structurally unknown
metabolites (Supplementary Table S2). Prediction of cancer or
control class labels for an originally held out test set (1/3 of the
data) was used to confirm that an O-PLS-DA model calculated
from the selected features (top 10%) displayed improved predic-
tive performance (AUC, 88.5%; sensitivity, 92.3%; specificity,
84.6%) compared with a model constructed from all excluded
features (bottom 90%; AUC, 80.77%; sensitivity, 76.92%; spec-
ificity, 84.62%; Supplementary Table S3; see Materials and Meth-
ods for details of calculations).

Partial correlations and combinedwithmass spectral similarity
networks were used to analyze empirical relationships among all
annotated and structurally unknownO-PLS-DA–selected features
(Supplementary Fig. S1 and Supplementary Table S2).

Polyamine pathway-related compounds were altered in tumor
compared with nonmalignant tissue. 50-deoxy-50-methylthioade-
nosine (MTA) was elevated 1.8-fold in cancer compared with
normal (pFDR ¼ 6.27 � 10�5) tissue, and this change was
significantly correlated with 2.1- and 2.7-fold increases in the
carbohydrates fucose/rhamnose and nucleotide xanthine, respec-
tively (Fig. 2 and Table 2). The polyamine spermidine, and related

Table 1. Patient characteristics

Variable Lung cancer patients

Total sample size, N 39
Age, mean (�SD) 72.33 (�8.78)
Pack/year, mean (�SD) 35.91 (�26.05)
Female, N (%) 24 (61.54%)
Current smoker, N (%) 5 (12.82%)
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urea cycle intermediates, ornithine and citrulline, showed con-
certed decreases in cancer compared with control tissue (Fig. 2),
whereas another polyamine, putrescine was unchanged (Supple-
mentary Table S1). In addition, decreases in four other structurally
unknown metabolites were also significantly correlated with
changes in spermidine and ornithine (Supplementary Fig. S1).

Many compounds associated with purine and pyrimidine
biosynthesis were significantly increased in tumor compared with
control tissue (Table 2). Of these metabolites, 5,6-dihydrouracil
was significantly elevated by 2.4-fold in cancer compared with
control tissue (Table 2), and constituted the single best multivar-
iate predictor for cancer. The cancer-dependent increase in 5,6-
dihydrouracil, an oxidation product of uracil, was also positively
correlated with similar changes in MTA, xanthine, and 4-hydro-
xybutyric acid (Fig. 2).

Carbohydrates showed variable changes in cancer compared
with nonmalignant tissue (Table 2). Glucose was significantly
reduced by 0.5-fold in cancer compared with control tissue
(Table 2), and this change was positively correlated with a
decrease in ornithine and the increase in 5,6-dihydrouracil (Fig.
2). Conversely, ribitol and arabitol showed correlated elevations
in cancer compared with control tissue which were unrelated to
other O-PLS-DA–selected discriminants for cancer.

There were significant differences in lipid profiles between
cancer and nonmalignant tissues (Table 2). Particularly striking
was that themajority of fatty acids were all significantly decreased
in cancer relative to nonmalignant tissue (Fig. 1 and Table 2) with
the exception of arachidonic acid which was elevated by 1.5-fold.
The correlated decreases in caprylic acid and 1-monostearin
(Table 2) were also positively correlated with reductions in lysine
and spermidine, and (through cysteine) negatively correlated
with the elevation in 5,6-dihydrouracil (Fig. 2). Both of the
vitamin E–related compounds, a- and g-tocopherol, were signif-
icantly elevated in adenocarcinoma (Table 2). The 2.2-fold
increase in a-tocopherol was also correlated with the decrease
in ornithine (Fig. 2).

Similar to carbohydrates, amino acids showed variable changes
in cancer (Table 2). In contrast with the noted decreases in
ornithine, citrulline, and lysine, glutamate was significantly ele-
vatedby1.4-fold in cancer comparedwith control tissue (Table 2).

Table 2. Significantly altered metabolites and key discriminants of biochemical
changes in adenocarcinoma compared with nonmalignant tissue

Name
Fold
changea Directionb pFDRc Rankd

Amino acids and derivatives
Ornithine 0.5 DOWN 9.61E�06 2
Citrulline 0.7 DOWN 0.003944 4
Lysine 0.4 DOWN 6.49E�05 5
Cysteine 1.6 UP 0.002516 6
Spermidine 0.7 DOWN 0.001625 8
Glutamate 1.4 UP 0.001694 12
Trans-4-hydroxyproline 1.3 UP 0.007531
Proline 1.4 UP 0.008061
Methionine sulfoxide 0.6 DOWN 0.045096
Isothreonic acid 1.3 UP 0.007637
Glyceric acid 1.4 UP 0.017117
Alanine 1.2 UP 0.013497
Histidine 0.6 DOWN 0.012104

Organic acids
4-Hydroxybutyric acid 1.3 UP 0.004333 9
Malic acid 1.3 UP 0.045285
Citric acid 0.6 DOWN 0.007308
2-Hydroxyglutaric acid 1.7 UP 0.003292

Carbohydrates and related compounds
Ribitol 1.8 UP 6.64E�07 3
Glucose 0.5 DOWN 0.000366 16
Fucose þ rhamnose 2.1 UP 0.000177 18
Arabitol 1.4 UP 0.003463 20
Xylitol 1.4 UP 0.000939
Tagatose 0.8 DOWN 0.022467
Mannitol 0.7 DOWN 0.016961
Glycerol-3-galactoside 2.2 UP 0.003224
Glycerol 1.2 UP 0.018636
Fucose 1.5 UP 0.007527
Erythronic acid lactone 0.6 DOWN 0.006205
Erythronic acid 1.2 UP 0.048138
Arabinose 1.3 UP 0.000454
1,5-Anhydroglucitol 0.8 DOWN 0.037117

Monoglycerols
1-Monopalmitin 1.1 UP 0.047396
1-Monostearin 0.8 DOWN 0.047268 11

Tocopherols
Alpha-tocopherol 2.2 UP 4.12E�07 13
Gamma-tocopherol 1.2 UP 0.010335

Fatty acids
Arachidonic acid 1.5 UP 0.006889
Capric acid 0.8 DOWN 0.004333
Caprylic acid 0.8 DOWN 0.001644 19
Lauric acid 0.9 DOWN 0.034948
Palmitic acid 0.9 DOWN 0.027453
Pelargonic acid 0.8 DOWN 0.033083
Pentadecanoic acid 0.8 DOWN 0.014977
Stearic acid 0.8 DOWN 0.047396

Miscellaneous lipids
Dihydrosphingosine 0.6 DOWN 0.000544
Dodecanol 0.8 DOWN 0.00205
Gluconic acid 0.5 DOWN 0.000381
Triethanolamine 0.7 DOWN 0.002243
3-Phosphoglycerate 0.4 DOWN 0.001049

Purines and pyrimidines
5,6-Dihydrouracil 2.4 UP 2.42E�07 1
Xanthine 2.7 UP 0.000381 10
50-Deoxy-50-methylthioadenosine 1.8 UP 6.49E�05 14
Adenine 1.5 UP 0.000366 15
Adenosine-5-monophosphate 2.5 UP 0.00132 17
Uridine 0.7 DOWN 0.002044
Uracil 1.4 UP 0.036508
Inositol-4-monophosphate 0.7 DOWN 0.020452
Inosine 50-monophosphate 3.5 UP 0.00085

(Continued on the following column)

Table 2. Significantly altered metabolites and key discriminants of biochemical
changes in adenocarcinoma compared with nonmalignant tissue (Cont'd )

Name
Fold
changea Directionb pFDRc Rankd

Cytidine-5-monophosphate 1.8 UP 0.001397
Allantoic acid 0.6 DOWN 0.005247

Miscellaneous metabolites
UDP GlcNAc 2.3 UP 2.24E�05 7
Uric acid 1.4 UP 0.019398
UDP-glucuronic acid 1.2 UP 0.00667
Quinic acid 0.8 DOWN 0.020487
Nicotinamide 1.4 UP 0.006078
N-acetyl-D-mannosamine 1.5 UP 0.000333
Hydroxylamine 0.8 DOWN 0.013145
Creatinine 1.4 UP 0.01111
Biuret 0.6 DOWN 0.002136
Benzoic acid 0.9 DOWN 0.038501
Aminomalonic acid 1.3 UP 0.030249

aRatio of means relative to control.
bDirection of change in means relative to control.
cFDR adjusted mixed effects model P value.
dImportance of metabolic change based on O-PLS-DA model loading.
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The increase in glutamate was positively correlated with increases
in adenine, adenosine-5-monophosphate (AMP), and uridine
diphosphate N-acetylglucosamine (UDP GlcNAc; Fig. 2).

Discussion
We report one of the largest clinical studies of lung cancer tissue

to date to demonstrate a differential metabolomic signature
between patient-matched lung adenocarcinoma and nonmalig-
nant tissues. One limitation of this study, and others like it, is the
potential for tissue microheterogeneity at the sub-biopsy level.
Previously, Hori and colleagues evaluated seven lung cancer and
noncancer tissues, of which 4 were adenocarcinoma, and GC-MS
analysis was used to identify significant changes in 48metabolites
(5). More recently, Kami and colleagues used capillary electro-
phoresis time-of-flight MS to evaluate 9 tumor and normal lung
tissue pairs; three adenocarcinoma samples were evaluated with
general increases in amino acids (n ¼ 19) in lung tumors com-

pared with normal tissues (25). However, these studies were not
designed to specifically investigate biochemical perturbations in
early stage adenocarcinoma and due to the pathologic heteroge-
neity of the samples in the earlier studies, a detailed comparison
with the current investigation is not possible. Here, we present the
most comprehensive analysis to date of metabolic differences
between early stage adenocarcinoma and nonmalignant tissue.

Compared with nonmalignant tissue, adenocarcinoma dis-
played significant elevations in ribitol, arabitol, and fucose/rham-
nose and a reduction in glucose (Table 2 and Figs. 1 and 2). The
observed 2-fold reduction in glucose in adenocarcinoma relative
to normal tissue is consistent with the Warburg effect, wherein a
high rate of aerobic glycolysis is linked to cytosolic lactic acid
fermentation, rather thanmitochondrial pyruvate oxidation (26).
While glucose was reduced, other members of the glucuronate
and pentose interconversion pathway (KEGG; ref. 20), arabitol,
ribitol, UDP-N-acetylglucosamine (UDP-GlcNAc), and xylitol,
all showed significant elevations in cancer compared with

Figure 1.
Metabolomic network of biochemical
differences between adenocarcinoma
and nonmalignant lung tissue. Edge
color and width denote the type
(enzymatic, purple; structural
similarity, gray) and strength of
relationships between metabolites.
Node color displays significance
(mixed effects model, pFDR � 0.05)
and direction of the change in tumor
relative to nonmalignant tissue
(green, decrease; red, increase; gray,
insignificant change; Table 2 and
Supplementary Table S1). Node size
displays O-PLS-DA loadings
(empirical importance), and thick
borders indicate O-PLS-DA–selected
discriminants for adenocarcinoma
(Table 2). See metabolite O-PLS-DA
model loading in Supplementary
Table S4 for quantitative differences
in metabolites and corresponding
node sizes. Node shape denotes the
biochemical super class of each
molecule.
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nonmalignant tissue (Table 2). These observations suggest that
compared with control, adenocarcinoma displays increased pen-
tose phosphate metabolism and an elevated glucuronidation
status. The pentose phosphate pathway is involved in nucleotide
synthesis for DNA replication and is used to provide reducing
equivalents for a variety of cellular reactions (27).

We observed a direct correlation between the noted reduction
in glucose and a 2.4-fold elevation in 5,6-dihydrouracil, which
constituted the single best discriminant of adenocarcinoma com-
paredwith nonmalignant tissue (Table 2). 5,6-dihydrouracil is an
oxidation product of the nucleotide uracil, and may provide a
stable marker of altered nucleotide metabolism in adenocarcino-
ma compared with nonmalignant tissue. In humans, catabolism
of uracil to 5,6-dihydrouracil is mediated by dihydropyrimidine
dehydrogenase (DPD). Both DPD activity and expression have
been shown to be increased in lung adenocarcinoma compared
with control tissue (28). The degree of patients' DPD activity has
also been related to improved efficacy of cytotoxic effects from
common postoperative adjuvant therapy for non–small cell lung
cancer (NSCLC) anticancer drug, 5-fluorouracil, and its deriva-
tives (28, 29). Given our data and the supporting literature, we
hypothesize that monitoring the ratio between 5,6-dihydrouracil
and uracil in patients with NSCLC may provide a personalized
diagnostic to identify cohorts of patients with high DPD activity
who may particularly benefit from anticancer therapy with DPD
inhibitors.

The cancer-dependent elevation in 5,6-dihydrouracil was also
positively correlated with an increase in xanthine (Fig. 2). The
degradation of hypoxanthine to xanthine followed by the con-

version of xanthine to uric acid, also elevated in adenocarcinoma
(Table 2), is mediated by xanthine oxidoreductase (XOR; ref. 30).
XOR, a key enzyme in the metabolism of purine nucleotides, has
also been linked to the production of reactive oxygen species
(ROS; refs. 30, 31). Assessment of XORactivity has been suggested
as a diagnostic for NSCLC (32). In particular, reduced XOR
expression was associated with shortened survival times
(30, 32), whereas XOR-induced ROS products have been linked
with an increased risk for developing various forms of cancer,
includingNSCLC (30, 33–35). Given this evidence, assessment of
xanthine and uric acid levelsmay provide novel indicators of XOR
activity and serve as diagnostic marker of tumorigenesis.

Cancer-dependent elevations in cysteine (Table 2) were posi-
tively correlated with changes in 5,6-dihydrouracil (Fig. 2). This
observation may reflect an increase in glutathione synthesis in
response to elevated ROS production in cancer compared with
control tissue. Previously, Krepela and colleagues identified sig-
nificant elevations of cysteine in squamous cell lung tumor
compared with non-involved tumor tissue (36). Cysteine, an
important precursor in glutathione production (37), has been
shown to be elevated in various types of cancer, including breast,
ovarian, head and neck, brain, and lung cancer (37). Consistent
with the evidenceof increasedoxidative stress in adenocarcinoma,
we also observed cancer-associated elevations in the vitamin E
isoforms a-tocopherol and g-tocopherol (Table 2). These well-
known antioxidants have been extensively studied as chemo-
preventive agents; however, the relationship between serum levels
of tocopherols and lung cancer has yielded conflicting results
(38). To date, there appears to be little, if any, data on tocopherol

Figure 2.
Partial correlation network displaying
conditionally independent
relationships between O-PLS-DA–
selected discriminants for
adenocarcinoma (Table 2). Edge color
and width denote the direction and
magnitude of partial correlations
(pFDR�0.05). Node color displays the
direction of the change in tumor
relative to nonmalignant tissue (green,
decrease; red, increase; pFDR
� 0.05). Node size displays the
metabolite loading (empirical
importance) in the O-PLS-DA model,
and shape denotes the biochemical
super class of each molecule. See
metabolite O-PLS-DAmodel loading in
Supplementary Table S4 for
quantitative differences in metabolites
and corresponding node sizes. Node
inset boxplots summarize differences
in z-scaled measurements between
tumor and nonmalignant tissue.

Altered Nucleotide Metabolism in Lung Adenocarcinoma

www.aacrjournals.org Cancer Prev Res; 8(5) May 2015 415

Research. 
on April 14, 2016. © 2015 American Association for Cancercancerpreventionresearch.aacrjournals.org Downloaded from 

Published OnlineFirst February 5, 2015; DOI: 10.1158/1940-6207.CAPR-14-0329 

http://cancerpreventionresearch.aacrjournals.org/


levels in solid tumors or cancer cells. However, their observed
elevation in adenocarcinoma compared with nonmalignant
tissue is in line with other observations supporting an increase
in compensatory mechanisms to deal with oxidative stress in
tumors. Furthermore, the Carotene and Retinol Efficacy Trial
(CARET) study suggested that antioxidant supplementation
does not help in preventing lung cancer (39).

Related to the previously noted increases in nucleotide meta-
bolites (Fig. 2), and directly correlated with changes in xanthine
(Fig. 2), MTA was 1.8-fold elevated in cancer compared with
nontumorous tissue (Table 2). MTA, through the action of 50-
deoxy-50-methylthioadenosine phosphorylase (MTAP), is
involved in S-adenosylmethionine (AdoMet) salvage, purine
salvage, and spermidine synthesis (40). MTAP activity has been
shown to be reduced in a wide variety of tumor types including
NSCLC (41). Tumors with reduced MTAP activity, instead of
purine salvage (42), are highly dependent on de novo purine
synthesis for production of DNA, RNA, and purine-containing
energy molecules (e.g., ATP). Consequently, the use of de novo
purine synthesis inhibitors as anticancer therapy for MTAP-defi-
cient tumors (42) has gained considerable attention. The
observed increase in MTA in lung adenocarcinoma suggests a
decrease in MTAP-dependent purine salvage and an increased
reliance on de novo purine synthesis. This is further supported by
the observed 3.5-fold increase in inosine-5-monophosphate
(IMP), an important component in de novo purine synthesis
(43), in malignant compared with control tissue (Table 2). In
addition to de novo purine synthesis, MTA is also involved in
polyamine synthesis.

Twopolyamine-relatedmetabolites, ornithine and spermidine,
were reduced in cancer compared with control tissue (Table 2).
This is somewhat surprising given previous reports of increased
polyamines in various types of cancers, including breast (44) and
colorectal cancer (45). However, it has also been previously
shown that increased levels of MTA can inhibit MTAP activity,
and lead to decreased levels of polyamines in non–small cell lung
carcinoma (40). In addition to the previously noted evidence for
decreasedMTAP activity, cancer-associated reduction in ornithine
may also contribute to the observed decrease in spermidine in
adenocarcinoma compared with nonmalignant tissue (Table 2).
Ornithine, an important intermediate in nitrogen disposal
through conversion to citrulline, is involved in proline synthesis
(46). Compared with normal tissue, adenocarcinoma displayed a
significant reduction in citrulline and an elevation in proline. This
evidence supports the hypothesis that in adenocarcinoma, orni-
thine may be diverted away from citrulline and spermidine
synthesis toward proline production.

Adenine, which can be produced from the cleavage of MTA by
MTAP, and its metabolite adenosine-5-monophosphate (AMP)
were increased in adenocarcinoma compared with control tissue
(Fig. 2 and Table 2). Given previous evidence of reduced MTAP
activity, we expect that adenine originates from plasma or sur-
rounding tissues (47). Furthermore, we did not see a direct
correlation between MTA and adenosine levels (Fig. 2), but
instead both adenine and AMP were significantly correlated with
a 1.4-fold cancer-dependent elevation in glutamate (Table 2
and Fig. 2). During de novo purine synthesis, glutamine
(unchanged; Supplementary Table S1) acts as an amido donor
through phosphoribosyl pyrophosphate (PRPP) to produce ribo-
sylamine-5-phosphate and glutamate (48). PRPP can participate
in both de novo purine synthesis or salvage pathways and lead to

production of IMP and AMP (48). Although we observed a
significant positive correlation between glutamate and AMP (Fig.
2), both glutamate and AMP showed a far stronger relationship
with UDP-GlcNAc (Fig. 2).

Known cancer-related perturbations in hexosamine biosynthe-
sis (49) may explain the observed correlation between glutamate
and a 2.3-fold increase in UDP-GlcNAc in adenocarcinoma com-
paredwith nonmalignant tissue (Table 2 and Fig. 2). Glutamate is
a byproduct of UDP-GlcNAc synthesis, which can be converted to
N-acetyl mannosamine, which was also increased by 1.5-fold in
adenocarcinoma (Table 2). Previous investigations have sug-
gested that increases in protein glycosylation with GlcNAc are
common aspects of cancer cells and tumors (50). O-GlcNAc
protein glycosylation is suggested to be a protective response,
and increase the tolerance of cells to a variety of sources of stress
(49). If the increase in UDP-GlcNAc is a marker of increased
protein glycosylation in cancer, thenmonitoring the levels of this
molecule may provide a marker of changes in cellular protein
function in adenocarcinoma compared with nonmalignant tis-
sue. For example, the activity of protein kinase C (PKC), impli-
cated in tumorigenesis, has been shown to be upregulated by
increased flux through the hexosamine biosynthetic pathway
(51). The PKC-alpha isoform is highly expressed in NSCLC and
preferentially increased in adenocarcinoma compared with squa-
mous cell carcinoma (52). Together, these observations suggest
the need to combine proteomic, glycomic, and metabolomic
analyses to fully understand molecular mechanisms of protein
glycosylation in tumorigenesis.

Lastly, we also observed adenocarcinoma-dependent eleva-
tions in 2-hydroxyglutarate. 2-hydroxyglutarate has recently been
found to be an "oncometabolite," resulting frommutation of the
enzyme isocitrate dehydrogenase 1 and 2 (IDH1, IDH2) in cancer
cells, modifying its catalytic function to produce 2-hydroxyglu-
tarate from the substrate isocitrate instead of the normal alpha-
ketoglutarate product (53, 54). Increased levels of 2-hydroxyglu-
tarate havebeen found in leukemia (55), glioma (56), and thyroid
carcinoma (57). The finding of elevated 2-hydroxyglutarate sug-
gests that lung adenocarcinoma tissue should be examined for
IDH1 and IDH2mutations, a question that we plan to investigate
in future studies.

The observed perturbations of molecular mechanisms and
biochemical pathways in adenocarcinoma compared with non-
malignant tissue were consistent with known cancer-dependent
increases in energy utilization and proliferation. The current
investigation identified new biochemical pathways altered in
adenocarcinoma, which may aid the development of diagnostic
markers for cancer screening, early detection, and treatment
efficacy monitoring as shown by the validated performance of
the multivariate classification model (AUC, 88.5%; sensitivity,
92.3%; specificity, 84.6%). This study suggests thatmeasuring the
ratios of 5,6-dihydrouracil/uracil and xanthine/uric acid may
serve as valuable new biomarkers for tumorigenesis in lung
cancer.
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