

Title: Dual column/polarity liquid chromatography operation for 5 minute high-resolution metabolomics, Q-Exactive HF

SOP: QEHF_HRM-DC5min_92017_v1 Revision: 1

Date effective: 27 September 2017

HILIC-positive chromatography method summary

The HILIC column is operated parallel to reverse phase column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10-port and 6-port switching valves. During operation of HILIC separation method, the MS is operated in positive ion mode and 10 μ L of sample is injected onto the HILIC column while the reverse phase column is flushing with wash solution. Flow rate is maintained at 0.35 mL/min until 1.5 min, increased to 0.4 mL/min at 4 min and held for 1 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 2% formic acid (v/v) in LC-MS grade water. Initial mobile phase conditions are 22.5% A, 75% B, 2.5% C hold for 1.5 min, with linear gradient to 77.5% A, 20% B, 2.5% C at 4 min, hold for 1 min, resulting in a total analytical run time of 5 min. During the flushing phase (reverse phase analytical separation), the HILIC column is equilibrated with a wash solution of 77.5% A, 20% B, 2.5% C.

C₁₈-negative chromatography method summary

The C₁₈ column is operated parallel to the HILIC column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10-port and 6port switching valves. During operation of the C₁₈ method, the MS is operated in negative ion mode and 10 μ L of sample is injected onto the C₁₈ column while the HILIC column is flushing with wash solution. Flow rate is maintained at 0.4 mL/min until 1.5 min, increased to 0.5 mL/min at 2 min and held for 3 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 10mM ammonium acetate in LC-MS grade water. Initial mobile phase conditions are 60% A, 35% B, 5% C hold for 0.5 min, with linear gradient to 0% A, 95% B, 5% C at 1.5 min, hold for 3.5 min, resulting in a total analytical run time of 5 min. During the flushing phase (HILIC analytical separation), the C₁₈ column is equilibrated with a wash solution of 0% A, 95% B, 5% C until 2.5 min, followed by an equilibration solution of 60% A, 35% B, 5% C for 2.5 min.

Chemicals Needed:

- Positive ESI mobile phases: 1L LC-MS grade H₂O (Red-A); 1L LC-MS grade acetonitrile (Red-B); 1L 5% formic acid in LC-MS grade H₂O (Red-C)
- Negative ESI mobile phases: 1L LC-MS grade H₂O (Green-A); 1L LC-MS grade acetonitrile (Green-B); 1L 10mM ammonium acetate in LC-MS grade H₂O (Green-C)

Materials Needed

 Higgins endcapped C18 stainless steel column. 2.1mm x 50mm x 3µm particle size, Product #TS-0521-C183

Title: Dual column/polarity liquid chromatography operation for 5 minute high-resolution metabolomics, Q-Exactive HF

SOP: QEHF_HRM-DC5min_92017_v1 Revision: 1

Date effective: 27 September 2017

- Waters XBridge BEH Amide XP HILIC column. 2.1mm x 50mm x 2.5µm particle size. Product #186006089
- Thermo Accucore C18 guard column with holder, Product #17126-014005
- Thermo Accucore HILIC guard column with holder, Product # 17526-012105
- High-resolution Q-Exactive HF Orbitrap mass spectrometer with ESI source
- Dual LC pumps with degasser, autosampler and switching valves
- HPLC, Thermo Scientific Dionex Ultimate 3000 with refrigerated autosampler, dual channel pumps, 10-port and 6-port switching valves, with left pump set to control HILIC positive gradient and right pump set to control C18 negative gradient. Start pumps at 0.350 mL/min at initial conditions: Left pump 75% B and 2.5% C; Right pump 35% B and 5% C.

HILIC-positive Method

Method filename: 20160920_posHILIC120kres5min_ESI_c18negwash.meth

LC settings

- Run length: 5.5 min
- Valve 1 position: 1_2 at 0 min; 10_1 at 5 min
- Valve 2 position: 1_2
- Column oven temperature: 60°C
- Pump left: A= Water; B= Acetonitrile, C=2% formic acid in water
- Pump right: A= Water; B= Acetonitrile, C=10mM ammonium acetate in water
- Sampler: Draw speed= 2 μL/s; Draw delay= 1000 ms, Dispense speed= 25 μL/s; Dispense delay= 1000 ms; Dispense to waste= 32 μL/s; Sample height= 4mm; Inject wash= Both; Wash volume= 100 μL; Wash speed= 20 μL/s; Loop wash factor= 2; Injection mode= Normal; Drawer temperature= 8°C

EMORY UNIVERSITY SCHOOL OF MEDICINE	Clinical Biomarkers Laboratory Division of Pulmonary Allergy and Critical Care Medicine		
Department of Medicine	615 Michael St. Ste. 225, Atlanta GA, 30322		
Title: Dual column/p	olarity liquid chromatogra metabolomics, Q	aphy operation for 5 minute high-resolution Exactive HF	

LC gradient and flow information:

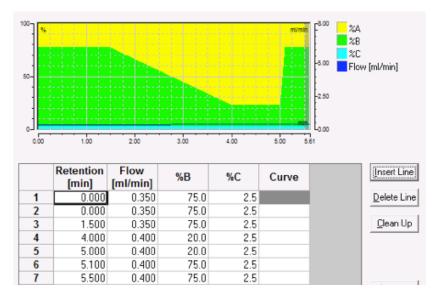


Figure 1A: Left pump mobile phase gradient and flow rate for HILICpositive (HILIC analytical separation)

Figure 1B: Right pump mobile phase gradient and flow rate for HILICpositive (washing C18)

Title: Dual column/polarity liquid chromatography operation for 5 minute high-resolution metabolomics, Q-Exactive HF

SOP: QEHF_HRM-DC5min_92017_v1 Revision: 1	Date effective: 27 September 2017
---	-----------------------------------

c18-negative Method

Method filename: 20160920_negC18120kres5min_ESI_HILICposwash.meth

LC settings

- Run length: 5.5 min
- Valve 1 position: 10_1 at 0 min
- Valve 2 position: 6_1
- Column oven temperature: 60°C
- Pump left: A= Water; B= Acetonitrile, C=2% formic acid
- Pump right: A= Water; B= Acetonitrile, C=10mM ammonium acetate
- Sampler: Draw speed= 2 μL/s; Draw delay= 1000 ms, Dispense speed= 25 μL/s; Dispense delay= 1000 ms; Dispense to waste= 32 μL/s; Sample height= 4mm; Inject wash= Both; Wash volume= 100 μL; Wash speed= 20 μL/s; Loop wash factor= 2; Injection mode= Normal; Drawer temperature= 8°C

LC gradient and flow information:

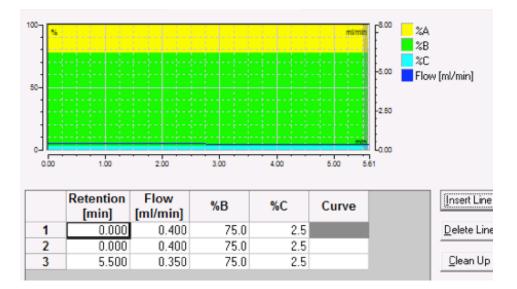
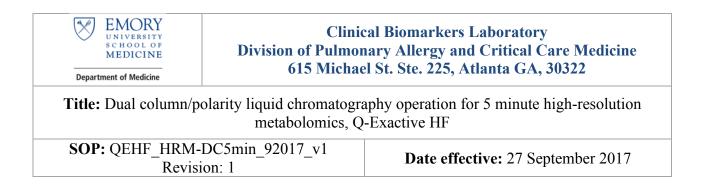



Figure 3A: Left pump mobile phase gradient and flow rate for C18negative (washing HILIC)

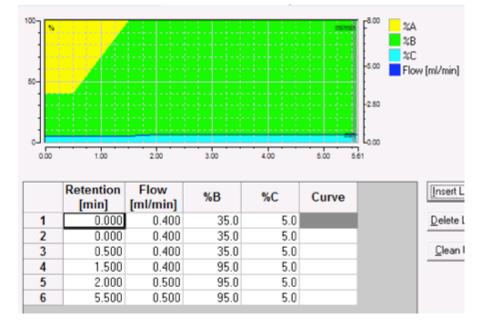


Figure 3B: Right pump mobile phase gradient and flow rate for C18negative (C18 analytical separation)

Instrument maintenance schedule

The following maintenance schedule is maintained to ensure the highest data quality possible. The time limits given should never be exceeded, however, it is permissible to perform maintenance early if coincides with the start of a new study. Maintenance is to be completed by trained staff only.

• Column lifespan: 3000 injections

Title: Dual column/polarity liquid chromatography operation for 5 minute high-resolution metabolomics, Q-Exactive HF

SOP: QEHF_HRM-DC5min_92017_v1 Revision: 1	Date effective: 27 September 2017
--	-----------------------------------

SOP Details and Version Information

Created by: Douglas I. Walker	Date: 27 September 2017
Reviewed by: Carolyn Accardi	Date: 327 September 2017
Approved by: Dean P. Jones	Date: 27 September 2017

Revision	Name	Reason	Effective date
01	Douglas I. Walker	Creation of SOP	27 September 2017