

Southeast Center for Integrated Metabolomics Clinical and Translational Science Institute

Sample Preparation of Maize Tissue

SOP: Sample_Preparation_01 Revision: 06

Date Effective: 01/29/15

Chemicals needed:

- Methanol, Fisher Optima Grade
- 10 mM Ammonium Acetate (made fresh)
- Daily Internal Standard Mix*
 - *See Appendix A

Materials needed:

- Labeled 1.5 mL or 2 mL Eppendorf tubes
- Repeater Pipette
- Calibrated Micropipettes in various volumes* (see table below)
- Appropriate Micropipette tips* (see table below)
- Vortex
- Sonicator
- Centrifuge
- Labeled LC vials with appropriate caps or 96-well tray
- Personal Protective Equipment

Туре	Volumes (µL)	Tip color
P10	0.5 - 10	white
P20	2 - 20	yellow
P200	20 - 200	yellow
P1000	200 - 1000	blue

Precise Micropipette Volume and Transfer capabilities

Instrumentation:

- Vortex, Fisher Brand- Vortex Genie 2:12-812: Ensure switch is set to touch mode and shake dial set to 8.
- Sonicator, Fisher Scientific- FS30: Turn heat switch to off and turn dial to desired time.
- Centrifuge, Eppendorf- 5417R: Open by pressing blue "open" button on bottom left of display. Check to be sure loading dock is cool. If not cool, close, press fast cool and wait until temperature is <10°C. When temperature is <10°C, press stop, wait for centrifuge to stop spinning, and open. Load samples making sure samples and/or weights are evenly distributed among the wheel.

Procedure:

Southeast Center for Integrated Metabolomics Clinical and Translational Science Institute

Sample Preparation of Maize Tissue

SOP: Sample_Preparation_01 Revision: 06

Date Effective: 01/29/15

- 1- Weigh 30mg of the freeze dried sample into clean Eppendorf tube.
- 2- Add 20µL Daily Internal Standard Mix to each sample
- 3- Add 750 μL Methanol and 750 μL 10mM Ammonium Acetate to sample.
- 4- Vortex each sample for 1 minute at room temperature (20-25 C).
- 5- Ultrasonicate for 10-20 minutes at room temperature.
- 6- Centrifuge at room temperature for 5-10 minutes at 17,000 G.
- 7- Transfer more than 1 mL of supernatant to a 1.5 mL eppendorf.
- 8- Transfer 800 μ L of supernatant to an LC vial.

Created By:	Sandi Batson	Date: 10/04/14
Reviewed By:	Tim Garrett	Date: 10/04/14
Approved By:	Art Edison	Date: 11/12/14

Revision Number	Name	Reason for Revision	Effective Date
01	Sandi B. Sternberg	Creation of SOP	10/04/14
02	Sandi B. Sternberg	Update Chemicals needed to reflect 10	10/27/14
		mM Ammonium Acetate being replaced	
		with water. Ammonium Acetate is not	
		compatible with NMR.	
03	Sandi B. Sternberg	Revert chemicals needed back to 10 mM	11/04/14
		Ammonium Acetate. Data analysis	
		showed better features with Ammonium	
		Acetate	
04	Sandi B. Sternberg	Added Vortex and Sonicator information	11/05/14
		to Instrumentation section.	
05	Sandi B. Sternberg	Added step in procedure to accommodate	11/07/14
		Internal standards.	
06	Sandi B. Sternberg	Added information for Appendix A	01/29/15