

Title: SBMRI NADH Assay

SOP: SB_NADH_Assay_01 Revision: 01

Date Effective: 04/13/15

Materials and Instrumentation:

- HSS T3 2.1 x 100 mm, 1.8 μm column, Waters Corp., Cat. No. 186003539
- Pyridine nucleotide and heavy isotope-labeled internal standards
- 3kDa molecular weight cutoff filter plate (350-μL well volume, 96 wells), Pall Corp., Cat. No. 8033
- Dionex UltiMate 3000 HPLC coupled to a Thermo Quantiva triple quadrupole mass spectrometer
 - o Software: Xcalibur (v. 3.0), Dionex (v. 2.14), TraceFinder (v. 3.2), Quantiva (v. 1.1)

Sample Preparation:

- 1. Retrieve study samples (-80°C freezer) and calibrator/internal standard solutions (-80°C freezer) and allow them to thaw on ice.
 - If not done previously, aliquot bulk study samples at 200 μL into fresh tubes
- 2. Obtain ten 1.7-mL Eppendorf tubes and place in a plastic tube rack on ice; label them for the calibration samples, C_1 - C_{10} ; note that C_{10} will be your high calibrator. Transfer 190 μ L of 50/50 0.1 M NaOH/MeOH to each tube.
 - Tissue study samples should be prepared as homogenate in 50/50 0.1 M NaOH/MeOH
 - Pyridine nucleotides are not currently assayed in biological fluids due to low abundance
- 3. Once thawed, vortex the calibrator and IS solutions retrieved from the freezer. Stock calibrator solutions are labeled as "Cals" from Cal 1 to Cal 10, with each Cal corresponding to a single calibration sample (See table below). Transfer 10 μ L of a Cal solution to the corresponding calibration tube, and tap lightly to mix.

Title: SBMRI NADH Assay

SOP: SB_NADH_Assay_01 Revision: 01

Date Effective: 04/13/15

The stock calibrator "Cals" are concentrated combinations of NADH and NADPH in 0.1 M NaOH. Once diluted as prescribed below, NADH and NADPH are present at the following concentrations:

Cal	Volume Spiked into Cal Tubes (uL)	Calibrator	Conc'n of NADH and NADPH Present (uM)
10	10	C ₁₀	100
9	10	C ₉	50
8	10	C ₈	25
7	10	C ₇	12.5
6	10	C_6	5
5	10	C ₅	2.5
4	10	C ₄	1.25
3	10	C ₃	0.5
2	10	C_2	0.25
1	10	C_1	0.125

4. All tubes (both calibrator and study sample) should now contain 200 μ L. Vortex the thawed internal standard solution (labeled NADH IS) and transfer 10 μ L to all tubes.

The stock Internal Standard solution is a concentrated solution of "heavy" NADH in 0.1 M NaOH. Once diluted as prescribed below, the NADH IS is present at the following concentration:

Solution	Volume Spiked into All Tubes (uL)	Conc'n of NADH IS present (uM)
NADH IS	10	2.5

5. Close the tubes, vortex, and centrifuge at 18,000 x g/5 min/10°C.

Title: SBMRI NADH Assay

SOP: SB_NADH_Assay_o1 Revision: 01

Date Effective: 04/13/15

6. After centrifugation, transfer the total volume of supernatant liquid ($^{\sim}200~\mu$ L) to a 3kDa molecular weight cutoff filter plate according to the following scheme:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	C ₁	C_2	C ₃	C ₄	C_5	C ₆	C ₇	C ₈	C ₉	C ₁₀		
В	1	2	3	4	5	6	7	8	9	10	11	12
С	13	14	15	16	17	18	19	20	21	22	23	24
D	25	26	27	28	29	30	31	32	33	34	35	36
E	37	38	39	40	41	42	43	44	45	46	47	48
F	49	50	51	52	53	54	55	56	57	58	59	60
G	61	62	63	64	65	66	67	68	69	70	71	72
н	73	74	75	76	77	78	79	80	81	82	83	84

^{*}Note: Calibrators should progress from C₁ (low cal) to C₁₀ (high cal)

7. Fix the molecular weight cutoff filter plate over a 96-well plate (Corning 1-mL) and filter the extract at 1500 x g at 10°C for at least 30 minutes, or until the volume of filtrate is suitable for LC/MS/MS analysis.

Calibrator Preparation:

Below is a list of pyridine nucleotide standards used for the construction of the calibration curve, as well as the initial stock concentrations prepared:

Metabolite	Carrier	Cat. No.	Stock Conc'n (mM)	Diluent
NADH	Sigma	N8129	12.5	0.1 M NaOH
NADPH	Sigma	N7505	12.5	0.1 M NaOH

Individual stock solutions are then <u>combined</u> to prepare the highest calibrator standard stock solution. The millimolar concentration of each amino acid <u>in the combined mixture</u> is given below:

Organic Acid	Initial <u>Individual</u> Stock Conc'n (mM)	Final <u>Combined</u> Stock Conc'n* (mM)
NADH	12.5	2
NADPH	12.5	2

^{*}Combined stock prepared in 0.1 M NaOH

Title: SBMRI NADH Assay

SOP: SB_NADH_Assay_01 Revision: 01

Date Effective: 04/13/15

This is the stock solution for the highest calibrator, C_{10} . Serial dilution of C_{10} yields the stock solutions for all ten calibrator samples, C_1 - C_{10} . For simplicity, the table below only shows the serial dilution scheme in terms of NADH's concentration:

Calibrator Stock Sol'n	Conc'n of NADH in Solution* (mM)
C ₁₀	2
C ₉	1
C ₈	0.5
C ₇	0.25
C ₆	0.1
C ₅	0.05
C ₄	0.025
C ₃	0.01
C ₂	0.005
C_1	0.0025

^{*}All dilutions made in 0.1 M NaOH

Based on the protocol above, the calibrator curve ultimately generated during prep will have the following range:

Calibrator	Conc'n of NADH and NADPH present (uM)
C ₁₀ *	100
C_9	50
C ₈	25
C ₇	12.5
C ₆	5
C ₅	2.5
C ₄	1.25
C ₃	0.5
C ₂	0.25
C ₁	0.125

Title: SBMRI NADH Assay

SOP: SB_NADH_Assay_01 Revision: 01

Date Effective: 04/13/15

Below is a table of the heavy-isotope-labeled internal standard used for the construction of the calibration curve, as well as the initial stock concentration prepared:

Metabolite- Int. Std.	Carrier	Cat. No.	Stock Conc'n (mM)	Diluent
NADH	Synthesize	d In-House*	50	0.1 M NaOH

^{*}The NADH internal standard ($^{18}O_2$ -labeled) were synthesized in-house by the SBMRI Medicinal Chemistry Core

Our limits of quantitation are set by the high and low points of our calibrator curves.

Assay Conditions:

Autosampler

Temperature: 10°CInjection Volume: 1 μL

o Needle Wash Solution: 80/20 Methanol/Water

Column

o Temperature: 40°C

o Maximum Pressure: 900 bar

Binary Pump

o Flow Rate: 0.54 mL/min

o Solvent A: 5 mM ammonium acetate, pH 6

Solvent B: AcetonitrileGradient Conditions:

Segment	Time (min)	% B	Flow Rate (mL/min)
0 (Start)	0.00	0.0	0.54
1	0.76	0.0	0.54
2	2.10	50.0	0.54
3	2.20	90.0	0.80
4	3.20	90.0	0.80
5	3.30	0.0	0.65
6	5.30	0.0	0.65
7	5.40	0.0	0.54

Mass Spectrometer

o Positive Ion Spray Voltage: 3500 V

Sheath Gas: 40Aux Gas: 10

Title: SBMRI NADH Assay

SOP: SB_NADH_Assay_o1 Revision: 01

Date Effective: 04/13/15

Sweep Gas: 1

o Ion Transfer Tube: 350°C

Vaporizer: 300°C
 Q1 Resolution: 0.7
 Q3 Resolution: 0.7
 CID Gas: 1.5 mTorr

• MRM Transitions

Metabolite	Precursor Ion (m/z)	Product Ion (m/z)	Collision Energy (V)	RF Lens (V)
NADH	666.2	649.2	25	85
NADPH	746.2	729.2	25	80

Created By:	Jeffrey A. Culver	Date: April 13, 2015
Reviewed By:	Christopher Petucci	Date: April 13, 2015
Approved By:	Christopher Petucci	Date: April 13, 2015

Revision Number	Name	Reason for Revision	Effective Date
01			
02			