Stable Isotope Resolved Metabolomics Studies in Ex Vivo TIssue Slices

Teresa W-M. Fan^{1*}, Andrew N. Lane¹, and Richard M. Higashi¹

¹Center for Environmental Systems Biochemistry, Dept. Toxicology and Cancer Biology and Markey Cancer Center, 789 S. Limestone St., Lexington KY

For correspondence: twmfan@gmail.com

[Abstract] An important component of this methodology is to assess the role of the tumor microenvironment on tumor growth and survival. To tackle this problem, we have adapted the original approach of Warburg ¹, by combining thin tissue slices with Stable Isotope Resolved Metabolomics (SIRM) to determine detailed metabolic activity of human tissues. SIRM enables the tracing of metabolic transformations of source molecules such as glucose or glutamine over defined time periods, and is a requirement for detailed pathway tracing and flux analysis. In our approach, we maintain freshly resected tissue slices (both cancerous and non-cancerous from the same organ of the same subject) in cell culture media, and treat with appropriate stable isotope-enriched nutrients, e.g. ¹³C₆-glucose or ¹³C₅, ¹⁵N₂-glutamine. These slices are viable for at least 24 h, and make it possible to eliminate systemic influence on the target tissue metabolism while maintaining the original 3D cellular architecture. It is therefore an excellent pre-clinical platform for assessing the effect of therapeutic agents on target tissue metabolism and their therapeutic efficacy on individual patients ^{2,3}.

Materials and Reagents

- Dialyzed, sterile filtered fetal bovine serum (FBS) (free of serum metabolites) 10-12 kDa (Atlanta Biochemical, catalog number: <u>\$12650</u>)
- 2. Tracer examples: ¹³C₆-glucose, ¹³C₂-1, 2-glucose, ¹³C₅, ¹⁵N₂-glutamine
- 3. Sources: 13 C₆-glucose/D-glucose ([U- 13 C], 99%) (Cambridge Isotope Laboratories, catalog number: <u>CLM-1396-CTM</u>), 13 C₂-1, 2 glucose/D-glucose (1, 2- 13 C₂, 99%) (Cambridge Isotope Laboratories, catalog number: <u>CLM-504</u>), 13 C₅, 15 N₂-glutamine/L-glutamine (13 C₅, 99%; 15 N₂, 99%) (Cambridge Isotope Laboratories, catalog number: CNLM-1275) OR
 - Isotec: D- 13 C₆-glucose (Sigma-Aldrich, catalog number: $\underline{660663}$); 13 C₂-1, 2 glucose (Sigma-Aldrich, catalog number: $\underline{661422}$); L-Glutamine- 13 C₅, 15 N₂ (Sigma-Aldrich, catalog number: $\underline{607983}$)
- 4. Penicillin + Streptomycin: GE Healthcare PEN/STREP/FUNGIZONE 100 ml (Thermo Fisher Scientific, Fisher Scientific, catalog number: SV3007901)
- Protocol[™] 10% Neutral buffered formalin (Thermo Fisher Scientific, Fisher Scientific, catalog number: 032-059)

- 41 6. 25% (w/v) sterile filtered ¹³C glucose (0.2 μm) in PBS (Stock solution-can be frozen,
 42 aliquoted, and stored at 4 °C)
- 43 7. Liquid nitrogen

50

53

54

55

56

57

58

59

60

61

62 63

64 65

66

70

75 76

- 44 8. 70% ethanol (v/v)
- 9. 60% acetonitrile in water (v/v) (Sigma Aldrich L010400)
- 46 10. Sodium Chloride (NaCl) (Thermo Fisher Scientific, Fisher Scientific, catalog number:
 47 \$271-1)
 - 11. Potassium chloride (KCI) (Sigma-Aldrich, catalog number: P9541)
- 12. Sodium phosphate dibasic (Na₂HPO₄) (Sigma-Aldrich, catalog number: <u>S0876</u>)
 - 13. Potassium phosphate monobasic (KH₂PO₄) (Sigma-Aldrich, catalog number: P9791)
- 51 14. Relevant medium (e.g. DMEM, RPMI, other defined medium) which lacks the tracer of interest:
 - a. Dulbecco's Modified Eagle's Medium (DMEM) is a powder formula, free of glucose, glutamine, pyruvate bicarbonate, and phenol red, giving considerable flexibility in formulation for SIRM studies (Sigma-Aldrich, catalog number: D5030) (see Recipes)
 - RPMI 1640 is a liquid medium free of glucose and glutamine, but contains bicarbonate and phenol red (MP Biomedicals, catalog number: <u>091646854</u>) (see Recipes)
 - 15. 0.2 µm sterile filtered Phosphate Buffered Saline (PBS) (see Recipes)
 - 16. Medium composition for 0.2% ¹³C₆-glucose, 2 mM ¹²C-Gln (100 ml) (see Recipes)
 - 17. Medium composition for 0.2% 12 C glucose, 2 mM 13 C₅, 15 N₂-Gln (100 ml) (see Recipes)

Equipment

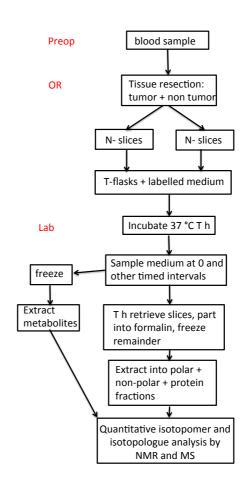
- Class II Biosafety Hood
- Trigas incubator with oxygen sensor and CO₂ sensor (Thermo Fisher Scientific,
 model: Hera cell 150i)
- 3. Sterilized rocker (Rotoshake Genie) (Scientific Industries, model: SI-1100)
 - Liquid nitrogen freezer for storage
- 5. K₂-EDTA vacutainers ("purple top") (BD, catalog number: 366643)
- 6. Refrigerated centrifuge with swing out rotor that can accept vacutainers (*e.g.* Thermo Fisher Scientific, model: Sorvall Legend X1R and Thermo Fisher Scientific, catalog number: 75-004-261; rotor: 75003181)
 - 7. Pipettors (variable size ranges) (USA Scientific ErgoOne)
 - 8. Weck Knife/Dermatome (George Tiemann & Co., catalog number: 222-5-523)
- 9. Weigh boats (Thermo Fisher Scientific, Fisher Scientific, catalog number: <u>08732113</u>
 and <u>08732115</u>)
- 79 10. 4-place balance (Mettler-Toledo, Thermo Fisher catalog number: <u>0133525</u>)
- 11. Ice bucket (Thermo Fisher Scientific, Fisher Scientific, catalog number: 02-591-44)

- Sharp dissecting scissors (Thermo Fisher Scientific, Fisher Scientific, catalog number:
 08940)
- 13. Excelta™ Plastic Tweezers (Thermo Fisher Scientific, Fisher Scientific, catalog
 number: 17-456-066)
- 85 14. Digital camera
- 86 15. 25 ml T Flasks NC vent cap (SARSTEDT AG & Co, catalog number: 83.1810.002)
- 87 16. Portable container for liquid nitrogen (Nalgene plastic dewar) (Thermo Fisher Scientific, 88 Fisher Scientific, model: \$34074C)
- Sterile syringes and needles (Thermo Fisher Scientific, Fisher Scientific, catalog number:
 10142534)
- 91 18. Disposable transfer pipets (Samco fine tip, 1 ml) (VWR International, catalog number: 92 16001192)
- 93 19. Aerosol barrier tips for 1 ml and 1-200 μl (Thermo Fisher Scientific, Fisher Scientific,
 94 catalog number: 02-707-42)
- 95 20. Screw cap plastic vials (2 ml) color coded caps (yellow, blue, green and red) (USA Scientific, catalog number: 1420-8706, 1420-8701, 1420-8702 and 1420-9704)
- 97 21. Snap top plastic vials (1.5 ml) (USA Scientific, catalog number: 1615-5510)
- 98 22. 15 ml Falcon tubes (SARSTEDT AG & Co, catalog number: 62.554.205)

100 Procedure

99

109


- 101 A. Tissue procurement
- 102 All tissue must be procured under an IRB
- approved protocol. As live human tissue is
- 104 handled, all personnel must undergo and
- 105 maintain biosafety, HIPAA and CITI
- 106 certifications.
- 107 An overview of the whole process is given
- in Scheme 1.

Scheme 1: FlowChart

Preop: preoperative room

OR: Operating Room.

The number of thin slices to be taken depends on the size of the tumor. A piece of tissue is also flash frozen in the OR, and additional tissue is placed in formalin for pathological analysis

- Blood samples provide overall information about the metabolic status of the individual subjects, and the buffy coat can be used for extracting DNA or RNA for sequence analysis.
 - 2. A 10 ml sample of blood should be drawn preoperatively into a purple top vacutainer (K₂-EDTA) preoperatively. Other anticoagulants such as citrate or heparin should not be used as they interfere with metabolic assays. A blood sample should also be drawn perioperatively after resection. The blood is inverted twice to ensure dissolution of the EDTA, and kept on ice immediately after blood draw. The blood should be separated into packed red cells, buffy coat and plasma within 30 min by centrifuging at 3,500 g for 15 min at 4 °C in a swing out rotor.
- Subsequent operations should be carried out in a BSL2+ biosafety cabinet.

- Note: We use the following color codes for storage: Red = whole blood, yellow = plasma, green = buffy coat, blue = urine.
 - 3. Plasma is aspirated into prechilled sterile 2 ml screw cap vials at 1 ml aliquots and flash frozen in liquid N_2 . Buffy coat is aspirated using a wide mouth plastic pipette into a 2 ml screwcap vial and flash frozen in liquid N_2 .
 - 4. These experiments have been carried out on fresh slices of paired cancerous (CA) and non-cancerous (NC) lung tissues resected from non-small cell lung cancer ² and pancreatic cancer patients. Upon resection, thin slices (0.5-1 mm thick) of tissue are excised from the surface of visually non-necrotic or fibrotic tumor regions using a Weck microtome in the Operating Room (OR), within approximately 5-10 min of resection. Roughly 1 cm² tissue is targeted. (See Figure 1 A). Control non-cancerous tissue from a distant (>10 cm) region is obtained similarly. A pathologist on-site inspects the CA and NC tissue specimens. Highly necrotic tissue is discarded.
 - 5. At the same time, a small piece of bulk CA tissue should be placed in DMEM or other appropriate medium kept room temperature for implantation into a recipient NSG mouse as patient-derived xenograft or PDX. A small piece each of CA and NC tissues is soaked in formalin for pathological examination or flash frozen in liquid N₂ for image-based metabolic analysis.
 - 6. Where tissue acquisition in the OR is impractical (such as colorectal or breast cancer resections), the slices can be prepared in the pathology laboratory located close to the OR. For comparison with freshly resected tissue, speed is essential as metabolism is rapidly changing. Whenever feasible, tissue freezing should be performed in the OR.
 - 7. The slices are placed into a drop of sterile PBS on two sterilized weigh boats to prevent sticking and for spreading slices evenly. Each weight boat is pre-numbered for CA or NC slices. The tissues on weight boats are then photographed. Each slice is rinsed briefly with sterile PBS, blotted (twice) and then carefully placed into pre-numbered (using ethanol-resistant marker pen) pre-tared (tare weight recorded) T25-flasks containing 10 ml DMEM (or other relevant medium) with the appropriate tracer (e.g. 10 mM 13 C₆-glucose or 2 mM 13 C₅, 15 N₂-glutamine), 10% dialyzed FBS (as

- needed), and 1x penicillin + streptomycin. The flasks with slices are brought to the culture room as soon as possible and sprayed with 70% ethanol, and wiped dry before placing them in the Biosafety hood.
- 8. Pipet 200 μl culture media from each flask into 1.5 ml snap-cap tubes (t₀-time zero media samples). Centrifuge for 10 min at 10,000 *x g* at 4 °C to remove tissue debris.

 Transfer 100 μl to tared 1.5 μl snap-cap tube for metabolite extraction and weigh the media transferred. Transfer the remaining media to a 1.5 ml screw-cap tube for long-term storage at -80 °C.
- 9. Weigh flasks in a 2-place balance inside the Biosafety hood and record weight on the flask.
 - 10. Transfer flasks to a CO₂ incubator containing a rocker set to low amplitude rocking (sufficient to ensure that the liquid moves over the slices without non-laminar flow) Figure 1B) set to 37 °C and 5 % CO₂, with oxygen set to the desired level (e.g. 20%, 1%).
 - 11. The flasks are continuously and gently rocked for 24 to 48 h for gas exchange and to maintain constant nutrient supplies at the tissue surface, while avoiding local buildup of waste products such as acids.
 - 12. As needed, the medium can be refreshed every 12 h, and sampled at 0, 6, 12, 24.... h for analysis of nutrient uptake and waste production. The flasks are weighed before and after each medium sampling point and flask weights are recorded on the flasks.

172 B. Tissue Harvesting

161

162

163

164

165

166

167

168

169

170

171

173

179

- 1. After 24 h incubation, weigh flasks.
- Place flasks on ice immediately after removing from the incubator to minimize further
 metabolism. Up to 6 flasks can be harvested at a time. Keep tissue slices on ice as
 much as possible during harvest.
- 177 3. Using a transfer pipet, aspirate and transfer the conditioned media into 15-ml conical centrifuge tubes.
 - 4. Centrifuge media for 15 min at 3,500 to 4,690 x g, 4 °C to remove any particulates and debris.
- 181 5. Pipet 100 μ l T₂₄ media supernatant into 1.5-ml snap-cap tubes for metabolite extraction.
- 183 6. Pipet 1 ml media aliquot into 2-ml screw-cap tubes for long-term storage at -80 °C.
- 7. The remaining medium is stored separately in a 7 ml vial at -80 °C for purposes such as exosome isolation.
- 186 8. Invert and tap the flask to move the tissue slices into the cap or neck region of the flask for retrieval. Keep flask inverted on ice.
- 9. Wash tissue slices 3x consecutively in ice-cold 10 ml cold PBS each in a 50 ml beaker.

- 10. Blot dry the tissue slices on Kimwipe and photograph the flattened slice on a small weigh boat.
- 11. Weigh the whole tissue slice on small weigh boats and record the weight.
- 12. Split a very small piece for preservation in 1 ml buffered formalin in a 1.5 ml snap-cap tube for histology. The remaining tissue slice is split evenly and each piece should weigh no more than 20-30 mg by wet weight to facilitate tissue homogenization and extraction efficiency. Immediately after weighing, each piece is flash-frozen in lig. N₂ and placed in a pre-liq. N₂ chilled 1.5-ml snap-cap tube for long-term storage at -80 °C.
- 13. After 6-8 h in formalin, replace the formalin with 70% ethanol for the tissue pieces prepared for histology.
- 14. Homogenize tissues in cold 60% acetonitrile (v/v) and extract tissue homogenates for metabolite analyses according to standardized protocols 4,5 before analyses using stable isotope-resolving analytical techniques (e.g. NMR and MS) 4 (cf. Figure 1C) 6.
- 15. This Protocol describes the procedure for stable isotope labeling of thin tissue slices. SIRM analysis involves the quantification of isotopomers (by NMR) and isotopologues (MS) that result from metabolic transformations of source molecules (e.g. ¹³C glucose or ¹³C, ¹⁵N Glutamine) in cells or tissue (cf Figure 1C). The techniques of SIRM analysis by NMR and mass spectrometry are described in detail in ^{3,6,7}.

Representative data

Α 211

190

191

192

193

194

195

196

197

198

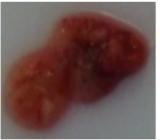
199

200

201

202 203

204


205

206

207 208 209

210

В

212 213

C Ex vivo tissue slices

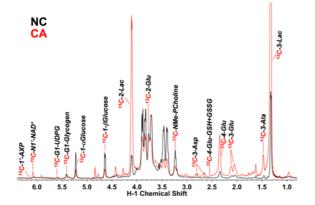


Figure 1 Example ex vivo tissue slice experiment. A. Example thin slices of non-cancerous lung tissue (NC, left) adjacent to a lung adenocarcinoma (CA, right); B. T25-flasks on a rocker inside a CO₂ incubator; C. Representative 1D ¹H{¹³C} HSQC NMR spectra (recorded at 14.1 T, 15°C) of extracts of CA versus NC lung slices from an non small cell lung cancer (NSCLC) patient incubated for 24 h in the presence of 10 mM ¹³C₆-glucose. The tissue slices were pulverized and extracted as described ^{3,4} which produces three phases- an upper aqueous phase containing polar metabolites, a lower organic phase containing non-polar metabolites (mainly lipids) and an interfacial phase that contains protein. Here the upper phase was lyophilized and redissolved in a phosphate buffer containing 50% D₂O and 25 nmol DSS-d₆ that serves both as a chemical shift reference and a concentration standard 8. The HSQC spectrum detects protons attached directly to ¹³C, and thus gives a readout of the metabolites that have incorporated ¹³C from the source molecule (glucose in this instance). The spectra of cancer and non-cancerous tissues are recorded under identical conditions, and the absolute intensities are normalized to the tissue protein weight. Peak areas were determined using peak fitting functions in MNOVA (Mestrelab Research, Santiago de Compostela, Spain) Enhanced production of various ¹³C labeled metabolites in the CA tissue slice is evident. including ¹³C-lactate (Lac), which is consistent with the Warburg effect or accelerated glycolysis in tumor tissues 9.

Notes

235236237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

215

216

217

218219

220221

222

223

224

225

226227

228

229

230

231

232233

- These procedures have been tested on freshly resected NSCLC and pancreatic cancer, as well as in patient derived mouse xenografts. Other tissues may need experimentation with the composition of the medium and length of incubation period for metabolic viability.
- 2. Larger or inflammatory tumors may have substantial areas of necrosis or fibrosis that need to be avoided.
- 3. A Weck microtome is hand held, but with practice the surgeons can reproducibly produce slices < 1 mm thick. Slice thickness is easily estimated by measuring the area of the slice from a photograph and from the wet weigh as the average thickness h = weight/area.</p>
- 4. Some tumors are highly mucilaginous and are more difficult to slice reproducibly.
- 5. An alternative to a Weck microtome is a vibrating microtome, which can reproducibly generate thinner slices from firm but not soft tissues (cf 10), but is much slower. Very thin slices (100-200 μ m) may show a proportionately larger wounding response and are more fragile.
- 6. As many tumors are heterogeneous not only in the cancer/stromal content in different regions of the tumor but also in terms of genetics, it is advisable to obtain multiple

- slices from the tumor to cover this heterogeneity. This also makes histopathological examination of each slice critically important.
 - 7. The margins of some tumors are not obvious without pathological examination. Tissue proximal to the tumor as well as distal from the tumor should be sampled for comparison.

Recipes

1. RPMI Medium 1640 and DMEM

For SIRM studies, the glutamine or glucose free version of the medium should be used, with supplementation of the appropriate concentration of ¹³C-enriched precursors in the base medium.

COMPONENTS	Molecular Weight	Concentration (mg/L)	Molarity (mM) RPMI	Molarity (mM) DMEM
Amino Acids		(3 /		
Glycine	75	10	0.133	0.40
L-Arginine	174	200	1.15	0.483
L-Asparagine	132	50	0.379	-
L-Aspartic acid	133	20	0.150	-
L-Cystine 2HCI	313	65	0.208	0/0.2
L-Glutamic Acid	147	20	0.136	-
L-Glutamine	146	300	2.05	2
L-Histidine	155	15	0.0968	0.27
L-Hydroxyproline	131	20	0.153	-
L-Isoleucine	131	50	0.382	0.8
L-Leucine	131	50	0.382	0.8
L-Lysine hydrochloride	146	40	0.274	1.0
L-Methionine	149	15	0.101	0.2
L-Phenylalanine	165	15	0.0909	0.4
L-Proline	115	20	0.174	-
L-Serine	105	30	0.286	0.4
L-Threonine	119	20	0.168	0.8
L-Tryptophan	204	5	0.0245	0.078

L-Tyrosine disodium salt dihydrate	261	29	0.111	0.4
L-Valine	117	20	0.171	0.8
Vitamins				
Biotin	244	0.2	0.000820	
Choline chloride	140	3	0.0214	0.0285
D-Calcium pantothenate	477	0.25	0.000524	0.008
Folic Acid	441	1	0.00227	0.009
i-Inositol	180	35	0.194	.04
Niacinamide	122	1	0.00820	0.033
Para-Aminobenzoic Acid	137	1	0.00730	
Pyridoxine hydrochloride	206	1	0.00485	.019
Riboflavin	376	0.2	0.000532	.001
Thiamine hydrochloride	337	1	0.00297	.012
Vitamin B12	1,355	0.005	0.0000037	-
Inorganic Salts				
Calcium nitrate (Ca(NO ₃) ₂ -4H ₂ O)	236	100	0.424	
Magnesium Sulfate (MgSO ₄) (anhyd.)	120	48.84	0.407	
Potassium Chloride (KCI)	75	400	5.33	
Sodium Bicarbonate (NaHCO ₃)	84	2,000	23.81	44
Sodium Chloride (NaCl)	58	6,000	103.45	
Sodium Phosphate dibasic (Na ₂ HPO ₄ -7H ₂ O)	268	1,512	5.64	
Other Components				
Glutathione (reduced)	307	1	0.00326	
Phenol Red	376.4	5	0.0133	

2. 10x PBS

Sources of reagents are given in the Materials Section

270		80 g NaCl
271		2 g KCI
272		14.4 g Na₂HPO₄ anhydrous
273		2.4 g KH ₂ PO ₄ anhydrous
274		dissolve in 950 ml 18 MOhm water, pH to 7.4, make to 1 L, sterile filter (0.2 μ m)
275	3.	Medium composition for 0.2% ¹³ C ₆ -glucose, 2 mM ¹² C-Gln (100 ml)
276		89.2 ml base medium minus tracer (e.g. glucose-free version) (89% concentration of
277		nutrients)
278		10 ml sterile filtered dialyzed FBS (10% FBS)
279		0.8 ml 25% sterile filtered ¹³ C ₆ glucose (0.2 μm) in PBS (10.75 mM glucose final)
280		1 ml 100x streptomycin/penicillin stock
281	4.	Medium composition for 0.2% ¹² C glucose, 2 mM ¹³ C ₅ , ¹⁵ N ₂ -Gln (100 ml)
282		88 ml base medium minus tracer (glutamine-free version) (88% concentration of all
283		nutrients)
284		10 ml sterile filtered dialyzed FBS (10% FBS)
285		1 ml 0.2 M sterile filtered ¹³ C ₅ , ¹⁵ N ₂ -glutamine (0.2 μm) in PBS (2 mM final)
286		1 ml 100x streptomycin/penicillin stock
287		For hormone sensitive tissues, activated carbon-stripped FBS may be used.
288		For other concentrations of FBS, adjust the volumes of the FBS and base medium
289		accordingly.
290		Note: Glutamine stock should be made fresh or stored at -20 °C in small aliquots to
291		avoid repeated freeze and thawing. It forms pyroglutamate on storage in solution even
292		at neutral pH at higher temperatures.
293		, ,
294	Ackno	wledgments
295		
296	Thi	s work was supported in part by the following grants: NIH P01 CA163223-01A1, NIH
297	5R	01ES022191-04, NIH 3R01ES022191-04S1, NIH 1U24DK097215-01A1, and the
298	Ke	ntucky Challenge for Excellence. This protocol has been developed based on work
299	des	scribed in ^{2,3,11} .
300	The	e authors declare no conflicts of interest.
301		
302	Refere	nces
303		
304	1.	Warburg, O. Versuche an überlebendem Carcinomgewebe (Methoden). Biochem.
305		Zeitschr. 142 , 317-333 (1923).
306	2.	Xie, H., Hanai, J., Ren, JG., Kats, L., Burgess , K., Bhargava, P., Signoretti, S.,
307		Billiard, J., Duffy, K.J., Grant, A., Wang, X., Lorkiewicz, P.K., Schatzman, S.,
308		Bousamra II, M., Lane, A.N., Higashi, R.M., Fan, T.WM., Pandolfi, P.P.P., Sukhatme,
309		V.P. & Seth, P. Targeting lactate dehydrogenase-A (LDH-A) inhibits tumorigenesis

- and tumor progression in mouse models of lung cancer and impacts tumor initiating cells. *Cell Metabolism* **19**, 795–809 (2014).
- 312 3. Sellers, K., Fox, M.P., Bousamra, M., Slone, S., Higashi, R.M., Miller, D.M., Wang, Y.,
- Yan, J., Yuneva, M.O., Deshpande, R., Lane, A.N. & Fan, T.W.-M. Pyruvate
- carboxylase is critical for non-small-cell lung cancer proliferation. *J. Clin. Invest.* **125**, 687-698 (2015).
- 316 4. Fan, T.W. Considerations of Sample Preparation for Metabolomics Investigation.
 317 *Handbook of Metabolomics* **17**(2012).
- 5. Fan, T.W.-M. Metabolomics-Edited Transcriptomics Analysis (Meta). in Comprehensive Toxicology, Vol. 2 (ed. McQueen, C.A.) 685–706 (Academic Press, Oxford, 2010).
- Lane, A.N., Fan, T.W. & Higashi, R.M. Isotopomer-based metabolomic analysis by NMR and mass spectrometry. *Biophysical Tools for Biologists*. **84**, 541-588 (2008).
- 7. Fan, T.W.-M., Lorkiewicz, P., Sellers, K., Moseley, H.N.B., Higashi, R.M. & Lane, A.N. Stable isotope-resolved metabolomics and applications to drug development.

 Pharmacology and Therapeutics 133, 366-391 (2012).
- 326 8. Fan, T.W.-M. & Lane, A.N. Assignment strategies for NMR resonances in metabolomics research. in *Methodologies for Metabolomics: Experimental Strategies* 328 and Techniques (eds. Lutz, N., Sweedler, J.V. & Weevers, R.A.) (Cambridge 329 University Press, Cambridge, 2013).
- 330 9. Warburg, O. On the origin of cancer cells. *Science* **123**, 309-314 (1956).
- 331 10. Zimmermann, M., Sebastian Lange, S., Lampe, J., Smirnow, I., Bitzer, M. & Lauer,
- U.M. Precision-Cut Slices of Normal and Tumorous Liver Tissues Generated with the
- 333 Leica VT1200 S Vibrating Blade Microtome. Vol. 95.8807 Rev B Order no.
- 334 1495.8807 (ed. Tübingen, M.U.) (LeicaBiosystems, 2012).
- 335 11. Bousamra, M., Day, J., Fan, T.W.-M., Higashi, R.M., Kloecker, G., Lane, A.N. & Miller,
- 336 D.M. "Clinical aspects of metabolomics " in *The Handbook of Metabolomics*., Vol. 17
- 337 (Humana, Totoya, 2012).