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Study Population 

We provide untargeted serum metabolomic profiles from 642 Parkinson’s disease (PD) patients and 277 

controls recruited as part of a community-based study of Parkinson’s disease (Parkinson’s Environment and 

Genes study, PEG). PEG is a population-based PD case-control study conducted in three Central California 

counties1. Participants were recruited in two, independent study waves: PEG1, 2000-2007 and PEG2, 2011-2018. 

All those with serum for metabolomics were included (PEG1: n=282 PD patients, n=185 controls; PEG2: n=360 

PD patients, n=90 controls). Patients were early in disease course at enrollment (3.0 years [SD=2.6] on average 

from diagnosis) and all were seen by UCLA movement disorder specialists for in-person neurologic exams and 

confirmed as having idiopathic PD based on clinical characteristics2. Characteristics of the PEG study subjects 

are shown in Supplemental Table 1. The patients were on average slightly older than the controls and a higher 

proportion of the patients were men, Hispanic, and never smokers compared to the controls. 

Sample Collection 

Blood samples were drawn from participants during field visits. Samples were centrifuged, kept on dry 

ice, and then stored in a −80 °C freezer at UCLA. Serum samples were shipped frozen to Emory University on dry 

ice for metabolomics analyses, where they were stored at −80 °C until analyses. 

High-Resolution Metabolomics (HRM) 

HRM profiling was conducted according to established methods. Detailed methods are provided in the 

accompanying file EmoryUniversity_SOP_DataAnalysis_092017_v1.pdf. Briefly, serum samples were randomly 

sorted into batches of 40. Each sample was thoroughly mixed with ice-cold acetonitrile (2:1 acetonitrile to 

serum), placed on ice for 30 minutes, precipitated protein was removed by centrifugation, and the resulting 

supernatant was transferred to an autosampler vial containing a low volume insert. We analyzed all sample 



extracts in triplicate with a dual-column, dual-polarity approach, including hydrophilic interaction (HILIC) 

chromatography with positive electrospray ionization (ESI) and C18 chromatography with negative ESI, and used 

two types of quality control samples. We included two methods of performance quality control. First, a NIST 

1950 QC sample was analyzed at the beginning and end of the entire analytical run. A second QC sample (Q-

Std), which is commercially purchased plasma pooled from an unknown number of men and women, was 

analyzed at the beginning, middle, and end of each batch of 40 samples for normalization and batch effect 

evaluation (n=180 Q-Std samples total included). 

The Emory metabolomics lab uses a quality control procedure based on XCMS and a set of confirmed 

metabolites and internal standards to evaluate the data quality of each batch: number of features detected, 

missing values, mass accuracy (threshold <5 ppm), Pearson correlation within technical replicates (threshold: 

0.9), and average coefficient of variation (CV) of feature intensities within replicates (threshold: <30%). Samples 

were re-analyzed if the data did not meet the defined criteria. 

 Our samples were processed across two LC-HRMS runs conducted approximately 6-months apart, to 

pool the metabolite data across runs, we used the apLCMS R package to perform retention time adjustment 

and feature alignment for both HILIC and C18 feature tables, using the adjust.time and feature.align functions3. 

For feature alignment, the m/z tolerance was 1e-05 and retention time tolerance was 37.016 (C18) and 38.246 

(HILIC) seconds. Overall, 2226 features aligned for C18 and 2919 for HILIC across the two LCMS runs. For 

analyses, we included metabolomic features with median CV among technical replicates <30% and Pearson 

correlation >0.9 and features detected in >50% of all study samples, leaving 2046 C18 features and 2716 HILIC 

features for analysis. 

We log 2 transformed the metabolite data, quantile normalized, and batch corrected with ComBat after 

replacing zeroes with the lowest detected value which has been recommended for metabolomics data. Data 

pre-processing visualization is shown in Supplemental Figures 1-4. From principal component (PC) analysis with 

the HILIC features, we discovered two clusters of samples seemingly separating based on technical, non-biologic 

factors. As a result, we performed an additional correction to remove variation between the PCs (Supplemental 

Figures 5-7). This was done with ComBat, using an indicator for whether the sample was part of the outlying 

cluster as the correction term. 

Within the Q-Std samples across both runs and all batches (n=180), the mean CV across all C18 

metabolite features before the data processing steps was 157.1% (median=75.2%, IQR=127.1%) but after the 

processing steps it reduced to 7.2% (median=6.3%, IQR=5.5%). For HILIC features, the mean CV before 

processing was 148.0% (median=69.3%, IQR=128.0%) and after the processing steps 8.7% (median=8.0%, 

IQR=8.3%). 
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Supplemental Figures 

 
 
Supplemental Figure 1. C18 negative column metabolomics processing: Sum of metabolite intensities across samples colored by batch & sample 
type, before pre-processing (log transformation, quantile normalization, ComBat batch correction). LCMS was run across 30 batches (n=46); machine 
was reset after 694 samples (i.e., samples ran in two larger groups of n=694 samples, each with 15 smaller batches within run). Run, batch, and drift 
effects are apparent in raw data.  
 



 
Supplemental Figure 2. C18 negative column after metabolomics processing. Raw c18 data was log transformation, quantile normalized, followed 
by ComBat for batch correction. LCMS was run across 30 batches (n=46); machine was reset after 694 samples (i.e., samples ran in two larger groups 
of n=694 samples, each with 15 smaller batches within run. While there are several apparent outliers, after processing, technical variation has been 
removed.



 

 
Supplemental Figure 3. C18 negative column metabolomics processing: Principal component analysis of raw 
and processed metabolomics data. PC variation primarily explained by LCMS run in raw data. After correction, 
sample type (quality control sample versus the study serum samples) primarily explains variation.



Supplemental Figure 4. HILIC positive column metabolomics processing: Sum of metabolite intensities across samples colored by batch & sample 
type before and after pre-processing (log transformation, quantile normalization, ComBat batch correction). LCMS ran in across 30 batches (n=46); 
machine was reset after 694 samples (i.e., samples ran in two larger groups of n=694 samples, each with 15 smaller batches within run). Run, 



batch, and drift effects are apparent in raw data. While there are several apparent outliers, after processing, the technical variation has been 
removed.



 
 

 
Supplemental Figure 5. HILIC positive column metabolomics processing: Principal component analysis of 
metabolomics data after median normalization and ComBat correction for batch effects. PC variation primarily 
explained by batch in raw data, after correction sample type (quality control sample versus the population-
based serum samples) primarily explains variation. However, there are two apparent clusters of population-
based serum samples, potentially explained by non-biologic (PD) technical variation (see Supplemental Figure 
6).  



 
 
Supplemental Figure 6. HILIC positive PCA of processed data, colored by different covariates. No distinguishing variables to describe the different 
clusters of study samples, though there is some separation by year of sample. Note gray indicates the QC samples. Therefore, we additionally 
corrected for inclusion in this cluster, as variation appears technical and is very influential in MWAS (Supplemental Figure 7).



 

 
Supplemental Figure 7. HILIC positive metabolomics data after processing: Log transformation, quantile normalization, ComBat batch correction, 
and additional adjustment for unexplained PC.  


