Metabolomics Workbench and the National Metabolomics Data Repository Lina Aboulmouna, Eoin Fahy, Mano Maurya, Srini Ramachandran, Neela Srinivasan, Sumana Srinivasan, Shankar Subramaniam University of California San Diego

> Kevin Coakley, Christine Kirkpatrick San Diego Supercomputer Center

NIH Common Fund's National Metabolomics Data Repository (supported by NIH grant, U2C-DK119886)

Overview of the Metabolomics Workbench

The <u>National Institutes of Health (NIH) Common Fund Metabolomics Program</u> was developed with the goal of increasing national capacity in metabolomics by supporting the development of next generation technologies, promoting data/metadata sharing and collaboration and providing training and mentoring opportunities. In support of this effort, the Metabolomics Workbench website was created at the University of California, San Diego in 2013. The Metabolomics Workbench houses the National Metabolomics Data Repository (NMDR) which serves as a national and international center for metabolomics data and metadata and provides analysis tools and access to metabolite standards, protocols and other resources to the global community.

Metabolomics Workbench: <u>https://www.metabolomicsworkbench.org</u>

Contains the National Metabolomics Data Repository (NMDR)

METABOLOMICS	You are logged in as efahy Log out
WORKBENCH	Search the Metabolomics Workbench
ome Data Repository Databases Protocols Tools Training / Events About Sea	arch
Welcome to the UCSD Metabolomics Workbench, a resource sponsored by the Common Fund of the	National Institutes of Health.
National Metabolomics Data Repository	Quick Links - Key Resources V
Upload and Manage StudiesBrowse and Search StudiesAnalyze Studies	Follow @MetabolomicsWB
As of 09/13/22 a total of 2200 studies have been processed by the National Metabolomics Data Repository (NMDR). There are 1904 publicly available studies and the remainder (296) will be made available subject their embargo dates.	Tweets from @MetabolomicsWB
Recently released studies on NMDR	へ Metabolomics Workbench Retweeted
ST002265 - Multi-omic analysis reveals bacteria may have a role in dental erosion; <i>Homo sapiens</i> ; <u>King's</u> <u>College London</u>	s Gary Siuzdak @kadz · Jul 21
ST002266 - Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean - study of particulate metabolites; ; <u>University of Washington</u>	DHA is a great choice of molecule of the month (#lipid) for World Brain Day.
ST001965 - Integration of Metabolomics and Proteomics to Unveil Orchestration of Photorespiration at	nd
Genetic Engineering and Biotechnology	NIH Common Fund Stage 2 Metabolomics Consortium Centers
	Metabolomics Consortium Coordinating

Metabolomics Workbench website: what does it contain?

- National Metabolomics Data Repository (NMDR)
 - MS and NMR metabolomics studies
 - Metadata, targeted/untargeted measurements, raw data
- Metabolomics Workbench Metabolite database
- RefMet standardized metabolite nomenclature resource
- Online suite of statistical analysis tools
 - For NMDR studies and ad-hoc user—supplied datasets
- MetStat summary reporting tool
- Human gene/protein database of metabolism-related genes
- Protocols for metabolomics experiments
- REST service
- MS search tools
- Other metabolomics software (MW group and collaborators)

The scope of Metabolomics

NMDR currently contains ~2200 studies from over 350 different institutions

MW Studies processed vs time

NMDR studies: Submissions by country (as of May 2022)

Country	Studies	Country	Studies
USA	1650	Sweden	5
China	87	Israel	4
Australia	43	Puerto Rico	4
Japan	41	Abu Dhabi	3
Canada	26	Luxembourg	3
Spain	26	Malaysia	3
Germany	25	Russia	3
India	17	Switzerland	3
UK	16	Belgium	2
Finland	15	Greece	2
France	15	Nigeria	2
South Africa	15	Oman	2
South Korea	15	Qatar	2
Brazil	13	Colombia	1
Holland	11	Indonesia	1
Italy	9	Pakistan	1
Portugal	6	Thailand	1
Singapore	6	Hong Kong	1
Austria	5	UAE	1
Denmark	5	Vietnam	1

40 countries total

NMDR Submissions over time: Percentage of submissions by year from the U.S.

%U.S. submissions of total NMDR submissions

Major Taxonomic categories

155 different species represented in NMDR studies

Sample source in NMDR studies (164 different types)

Sample source data (All stud	ies)
Sample Source	Studies
Blood	607
Liver	158
Cultured cells	152
Muscle	117
Urine	107
Feces	98
Bacterial cells	88
Brain	69
Intestine	68
Adipose tissue	51
Heart	51
Lung	47
Plant	40
Cells	39
Kidney	31
Eye tissue	29
Macrophages	28
Spinal cord	26
Fibroblast cells	24

Overview of NMDR cloud computing infrastructure

(located at the San Diego Supercomputer Center)

Overview of NMDR Inputs and Outputs

The **mwTab** format: A "common currency" for metadata/data sharing and storage

SECTIONS:	#METABOLOMICS WORKBENCH Nagireddy_Put VERSION 1	luri_20211115_090410 DATATRACK_ID:2929 STUDY_ID:ST002005 ANALYSIS_ID:AN003268 PROJECT_ID:PR001271
Matadata	CREATED_ON November 29, #PROJECT	2021, 7:26 pm
<u>ivietadata</u>	PR:PROJECT_TITLE PR:PROJECT_TITLE	Alterations of lipids in tumor tissues from African American and European American patient with bladder cancer
Project	PR:PROJECT_SUMMARY PR:PROJECT_SUMMARY PR:PROJECT_SUMMARY PR:PROJECT_SUMMARY	Cancer affects all individuals in the United States, unfortunately due to socioeconomics, and environmental disadvantages, certain group of populations especially African American (AA) community bear a high burden of cancer than the other community. Based or different again a condensional study expected that
Study	PR: PROJECT_SUMMARY PR: PROJECT_SUMMARY PR: PROJECT_SUMMARY	higher incidence and mortality rate of bladder cancer in AA community. To understand and reveal the biological mechanism in terms of lipidomics, lipidomics profile were performed in 98 bladder cancer (African American and
Experimental variables (factors)	PR:PROJECT_SUMMARY PR:INSTITUTE PR:LAST_NAME DD:FLDST_NAME	European America) tissues including benign. Baylor College of Medicine Putluri Nagi peddy
Subject	PR:ADDRESS PR:EMAIL PR:PHONE	One Baylor Plaza, Houston, Texas 77030 putluri@bcm.edu (713) 798-3139
Collection	#STUDY ST:STUDY_TITLE ST:STUDY_TITLE ST.STUDY_CLAMMARY	Alterations of lipids in tumor tissues from African American and European American patient with bladder cancer
Treatment	ST:STUDY_SUMMARY ST:STUDY_SUMMARY ST:STUDY_SUMMARY ST:STUDY_SUMMARY	socioeconomics, and environmental disadvantages, certain group of populations especially African American (AA) community bear a high burden of cancer than the other communities. Based on different social epidemiological study reported that
Sample preparation	ST:STUDY_SUMMARY ST:STUDY_SUMMARY ST:STUDY_SUMMARY	higher incidence and mortality rate of bladder cancer in AA community. To understand and reveal the biological mechanism in terms of lipidomics, lipidomics profile were performed in 98 bladder cancer (African American and
Chromatography	ST:STUDY SUMMARY ST:INSTITUTE ST:DEPARTMENT ST:LAST NAME	European America) tissues including benign. Baylor College of Medicine Molecular and Cellular Biology Putluri
Analysis	ST:FIRST_NAME ST:ADDRESS ST:EMAIL	Nagireddy One Baylor Plaza, Houston, Texas 77030 putluri@bcm.edu
MS	ST:PHONE #SUBJECT SU:SUBJECT_TYPE SU:SUBJECT_SPECTES	(713) 798-3139 Human
NMR	SU: JOBOBCI_SECTES SU: TAXONOMY_ID #FACTORS #SUBJECT SAMPLE FACTORS:	NOME SAFENS 9606 SUBJECT (optional) [tab]SAMPLE[tab]FACTORS (NAME:VALUE pairs separated by]) [tab]Faw file names and
	SUBJECT SAMPLE FACTORS SUBJECT SAMPLE FACTORS SUBJECT SAMPLE FACTORS SUBJECT SAMPLE FACTORS SUBJECT SAMPLE FACTORS	 - 03-22-2021-Pos-34734 BENIGN-30 Group:Benign - 03-22-2021-Pos-34880 BENIGN-32 Group:Benign - 03-22-2021-Pos-35088 BENIGN-36 Group:Benign - 03-22-2021-Pos-3503 BENIGN-38 Group:Benign
Data	SUBJECT_SAMPLE_FACTORS SUBJECT_SAMPLE_FACTORS	- 03-22-2021-Pos-35599 BENIGN-40 Group:Benign - 03-22-2021-Pos-35774 BENIGN-42 Group:Benign

Data

Named metabolite measurements (table) Named metabolites and annotations File names for untargeted datasets

Additional

Comments preceded by a #

MwTab specification: https://www.metabolomicsworkbench.org/data/mwTab_specification.pdf

Public website

ſ	hetabolon Vorkbens			lics		Search the M	You are logged in		
но	Iome Metabolomics Update Data Protocols Standards Resources NIH Metabolomics Training About Perso								
	Dverview E	Browse / Search Analyze Upload and Manage Data	Metabolite Database	Tutorials FAQ			(Restricted		
	Summa	ry of all studies							
	Study ID 술루	Study Title ✿基	Species ±∔	Institute ★寻	Analysis 술루	Submitted 會류	Download		
	ST000001	Fatb Induction Experiment (FatBIE)	Arabidopsis thaliana	University of California, Davis	MS	2013-01-15	Raw data (476K)		
	ST000002	Intestinal Samples II pre/post transplantation	Homo sapiens	University of California, Davis	MS	2013-01-23	Raw data (664K)		
	ST000003	Metabolomic analysis of mouse embryonic fibroblasts, embryonic stem cells, and induced pluripotent stem cells	Mus musculus	University of California, Davis	MS	2013-01-16	Raw data (5.3G)		
	ST000004	Lipidomics studies on NIDDK / NIST human plasma samples	Homo sapiens	LIPID MAPS	MS	2013-02-20	Raw data (48K)		
	ST000005	Timecourse on RAW 264.7 cells treated with Kdo2-Lipid A and compactin	Mus musculus	LIPID MAPS	MS	2013-02-20	Raw data (56K)		
	ST000006	White Wine Study	Vitis vinifera	University of California, Davis	MS	2013-02-21	Raw data (532K)		
	ST000007	Rice Infection Study	Oryza sativa	University of California, Davis	MS	2013-02-22	Raw data (1.7M)		
	ST000008	Metabolomics Analysis of Population Genetics (PopGen)	Homo sapiens	RTI International	NNR	2013-02-17	Raw data (39M)		

NMDR online portals

Data submission/review portal

etabolon	METABO	OLOM	1ICS			You are logged
² orkben ⁶	WORK	BENC	H		Search the M	letabolomics We
ne Met	abolomics Update Data Protocols Stand	ards Resources	NIH Metabolom	nics Tr	aining Al	bout Pe
	Inners / Search Applying Upland and Mappage Data	Matabalita Databasa	Tutoriale EAO			(Restric
Study ID	ary of all studies	Species 술루	Institute 全导	Analysis +	Submitted	Download
ST000001	Fatb Induction Experiment (FatBIE)	Arabidopsis thaliana	University of California, Davis	MS	2013-01-15	Raw data (476
ST000002	Intestinal Samples II pre/post transplantation	Homo sapiens	University of California, Davis	MS	2013-01-23	Raw data (664
ST000003	Metabolomic analysis of mouse embryonic fibroblasts, embryonic stem cells, and induced pluripotent stem cells	Mus musculus	University of California, Davis	MS	2013-01-16	Raw data (5.3)
ST000004	Lipidomics studies on NIDOK / NIST human plasma samples	Homo sapiens	LIPID MAPS	MS	2013-02-20	Raw data (488
ST000005	Timecourse on RAW 264.7 cells treated with Kdo2-Lipid A and compactin	Mus musculus	LIPID MAPS	MS	2013-02-20	Raw data (56k
ST000006	White Wine Study	Vitis vinifera	University of California, Davis	MS	2013-02-21	Raw data (532
ST000007	Rice Infection Study	Oryza sativa	University of California, Davis	MS	2013-02-22	Raw data (1.7)
ST000008	Netabolomics Analysis of Population Genetics (PopGen)	Homo sapiens	RTI International	NWR	2013-02-17	Raw data (39)

Development websites

н	iome Metabolomics Update Data Protocols Standards Resources NIH Metabolomics Training About Pers								
	Overview	Browse / Search Analyze Upload and Manage Data	Metabolite Database	Tutorials FAQ			(Restricted		
	Summa	ary of all studies							
	Study ID 會부	Study Title	Species +	institute 全事	Analysis	Submitted 會류	Download		
	ST000001	Fatb Induction Experiment (FatBIE)	Arabidopsis thaliana	University of California, Davis	MS	2013-01-15	Raw data (476K)		
	ST000002	Intestinal Samples II pre/post transplantation	Homo sapiens	University of California, Davis	MS	2013-01-23	Raw data (664K)		
	ST000003	Metabolomic analysis of mouse embryonic fibroblasts, embryonic stem cells, and induced pluripotent stem cells	Mus musculus	University of California, Davis	MS	2013-01-16	Raw data (5.3G)		
	ST000004	Lipidomics studies on NIDDK / NIST human plasma samples	Homo sapiens	LIPID MAPS	MS	2013-02-20	Raw data (48K)		
	ST000005	Timecourse on RAW 264.7 cells treated with Kdo2-Lipid A and compactin	Mus musculus	LIPID MAPS	MS	2013-02-20	Raw data (56K)		
	ST000006	White Wine Study	Vitis vinifera	University of California, Davis	MS	2013-02-21	Raw data (532K)		
	ST000007	Rice Infection Study	Oryza sativa	University of California, Davis	MS	2013-02-22	Raw data (1.7M)		
	97000009	Nathbolomics Applysis of Repulsion Canalics (RepCap)	Homo conicos	PTI International	NND	2012-02-17	Row data (2000)		

Open access

(non-embargoed studies)

Access controlled

Submit/View data/metadata submitted by your institution (or other institutions for which you have permission)

Metabolomics study workflow

Data analysis

Online data/metadata submission flowchart

National Metabolomics Data Repository Online Data Submission Tutorial Before you start:

- Have a summary of the study ready (a paragraph describing the goal and design of the experiment for the benefit of the general research community- a publication abstract or equivalent would be ideal).
- Have a study design table ready with sample names and experimental variables in separate columns. Subject information and other measurements may also included.
- Make sure that sample names in submitted results tables <u>exactly match</u> those in the study design table. Otherwise you won't be able to proceed with the submission.
- Collect all relevant protocols and raw data for upload to the WorkBench. Protocol/methods files may be uploaded at appropriate points during the online metadata submission process whereas (large) raw data is uploaded during the final registration step.

Online Data Submission

https://www.metabolomicsworkbench.org/data/DRCCDataDeposit.php

Register/login

(a): Complete the registration form

Use separate submissions if your study contains both MS and NMR data

Specify the embargo date if applicable

Please tell us about the data you plan to upload. (* = required)							
* mwTab file name	efahy_20210210_135208_mwtab.txt	(Automatically assigned name)					
* Name of archive file to be uploaded	EF45.zip	(e.g. MyData.zip, MyData.7z or MyData.gz)					
* Data type being submitted	MS 📉 (Use sepa	rate submissions for studies containing both MS and NMR data)					
* Protocol methods filename(s)	PR_SP45.pdf						
	PR_TR45.pdi						
* MS/NMR instrument manufacturer	ABI-SCIEX						
* MS/NMR instrument model	4000-QTRAP						
* Binary data format	.wiff	(e.gWIFF (ABI/Sciex), .RAW (Thermo) or .d (Agilent))					
* Multi-part study	No 🖂 (For multi-part studies, add additional	information such as "Study part m of n" in comments field)					
* Embargo	Yes 🗠 (e.g. If Yes, then please specify date b	pelow)					
Embargo until	2021-06-12 (e.g. 1 year, 6 months, or	YYYY-MM-DD)					
Open source text formats	.mzML						

(b): Begin the online submission of metadata and results

Upload and Manage Experimental Data and Metadata
Overview New Data Upload List Data Uploads Test Upload Tutorials
Please click New online study submission button to start a new study submission and enter metadata and results for your study with DataTrack ID 561 and mwTab file name efahy_20160407_093705. You will be prompted to upload an archive file after successful completion of the online submission process.
New online study submission

(b): Begin the online submission of metadata and results

Start a new study from scratch (most common option, especially for new users)

or

use the Metabolon template if the new submission is composed of Metabolon analyses

or

use an existing study as a template for a new submission

Project information

Items in pink are required fields

This is your unique

(contains your login

name and

date/time)

Personal information such as name, address, email is autopopulated in the form based on your login credentials (but you may edit these fields if not correct or appropriate)

Upload and Manage Data Start/Edit Data Submission Examples of study design and data layouts Tutorial mwTab identifier: efahy_20151117_182353 **project information** Add project metadata Reset Project Title: LIPID MAPS Lipidomics studies Project Type: MS quantitative analysis Multi-center quantitative lipidomics studies on samples from human and Submission identifier murine sources (LIPIDMAPS) Project Summary: Institute: University of California, San Diego Department: Bioengineering Laboratory: Multiple centers Last Name: Fahy First Name: Eoin Address: 9500 Gilman, La Jolla, CA, 92093, USA Email: efahy@ucsd.edu Phone: 858-534-4076 Funding Source: NIGMS

Study information

Subject type is mandatory and creates context-specific metadata items in subsequent sections

Study title should be unique (if you're submitting multiple studies)

Study summary is <u>very important</u> in order to describe the objectives of the experiment to the general public.

Ideally it should be a paragraph similar to an abstract in a publication

Personal information such as name, address, email is autopopulated in the form based on your login credentials (but you may edit these fields if not correct or appropriate)

Start/Edit Data Sul	Start/Edit Data Submission Examples of study design and data layouts Online Study Submission Tutor							
mwTab Identifier: msuc	mwTab Identifier: msud_20180206_090350 Return to start							
Jump to: Project Study Subject Study Design Collection Treatment Sampleprep Chrom. MS Data(Resu								
study information	Add study metadata Reset							
Subject Type:	Cultured cells							
Study Title:	Timecourse on RAW 264.7 cells treated with Kdo2-Lipid A and compactin							
Study Type:	Timecourse experiment							
Study Summary:	A and compactin. Experiments were conducted with RAW264.7 cells fed 10% fetal calf serum. 8-timepoint study: Measurements were taken at 0, 0.5,1,2,4,8, 12, and 24hrs for: (i) compactin, (ii) Kdo2-Lipid A, (iii) compactin + Kdo2-Lipid A. and (iv) control							
Institute:	LIPID MAPS							
Department:	Bioengineering							
Laboratory:	Multiple centers							
Last Name:	Fahy							
First Name:	Eoin							
Address:	9500 Gilman Dr, La Jolla, CA 92093							
Email:	efahy@ucsd.edu							
Phone:	959-534-5076							
Number of Groups:								

Subject information

Choose subject species from pulldown menu or enter a new species (Latin name)

mwTab Identifier: msud_20180206_090350 Return to start					
Jump to: Project Study	Subject Study Design Collection Treatment Sampleprep Chrom. MS Data(Results)				
subject information	Add subject metadata Reset				
Subject Type:	Cultured cells (entered in Study page)				
Subject Species:	Mus musculus v or (new):				
Taxonomy ID:	10090				
Genotype Strain:					
Age or Age Range:					
Weight or Weight Range:					
Height or Height Range:					
Gender:	Not applicable 🗸				
Cell Biosource or Supplier:					
Cell Strain Details:					
Subject Comments:					
Cell Primary Immortalized:					
Cell Passage Number:					
Cell Counts:					

Study design information

This section contains essential study design information for the study which must include sample identifiers and at least one experimental variable(factor) in tabular Subject_ID Sample_ID Genotype Treatment Batch RAW_FILE_NAME format. An additional "subject id" column relating the samples to a particular source CA11 CA11W0 SC 20190410 CA11W0.mzML 1a CA12 SC 20190410 CA12W0.mzML CA12W0 1a Wild-type Control (patient, animal, cell etc.) may also be included. Additional information unique to eacl CA13W0 Wild-type Control 1a SC 20190410 CA13W0.mzML CA11 CA11W50 Wild-type 50uM 1a SC 20190410 CA11W50.mzML sample (e.g. height, weight, BMI, age, assay measurement, etc.) may also be included [CA12 CA13 CA12W50 Wild-type 50uM SC 20190410 CA12W50.mzML 1a CA13W50 Wild-type 50uM 1a SC 20190410 CA13W50.mzML but should NOT be designated as factors (Designate these as "Other" in the next step) MX01M0 SC 20190410 MX01M0.mzML Mutant Control 1a MX02M0 1a SC 20190410 MX02M0.mzML Mutant Control MX03 MX03M0 SC 20190410 MX03M0.mzML Mutant Control 1a MX01 MX01M50 Mutant 50uM 1a SC 20190410 MX01M50.mzML MX02 MX02M50 Mutant 50uM 1a SC 20190410 MX02M50.mzML Start/Edit Data Submission | Examples of study design and data layouts | Online Study Submission Tutor MX03M50 Mutant 50uM 1a SC 20190410 MX03M50.mzML mwTab Identifier: efahy 20210727 112136 Return to start **IMPORTANT!!** Make sure that sample names in submitted results table(s) or file(s) exactly match those in the study design table. Otherwise you won't be able to complete the submission. (One needs to be able to relate experimental conditions in the study-design section via sample names in ALL submitted datasets) Input Study Design information (tab-delimited). Sample names, experimental factor(s) and raw data file pames (if submitting raw data) are required. Subject name and additional sample data are optional. First row must contain headings Subject ID Sample ID Genotype Treatment Batch RAW FILE NAME SC 20190410 CA11W0.mzML CA11 CA11W0 Wild-type Control 1a CA12 SC 20190410 CA12W0.mzML CA12W0 Wild-type Control 1a SC 20190410 CA13 CA13W0 Wild-type Control 1a Copy/paste as tab-delimited data from Excel or text CA11 Wild-type SC 20190410 CA11W50 50uM 1a Wild-type SC 20190410 CA12 CA12W50 50uM 1a file (View the "See examples.." link for more help) SC 20190410 CA13 CA13W50 Wild-type 50uM 1a SC 20190410 MX01 MX01M0 Mutant Control 1a SC 20190410 MX02M0.mzML MX02 MX02M0 Mutant Control 1a SC 20190410 MX03M0.mzML MX03 MX03M0 1a Mutant Control SC 20190410 MX01M50.mzML MX01 1a MX01M50 Mutant 50uM 347700 Then click on "View/check study design" View/check study design See examples of study design layout to view in tabular format

Include a column with

raw data file names

Study design information

Instructions:

Sample names/identifiers in the required 'Sample_ID' column should be unique and should exactly match those names used in the processed results. The required 'Raw file name' column must be completed when submitting raw data. The sample name to raw file name mapping is essential in order to enable re-analysis of raw data.

The optional 'Subject_ID' column may be used to designate the submitter's source identifier for a given sample (e.g. subject/patient/animal identifer). The required 'Factor' column(s) are used to assign experimental variables (factors) to sample groups (e.g. treatment condition, time, genotype, phenotype, etc.).

The optional **'Other'** column(s) may be used to include additional data such as BMI, age, glucose measurements, etc. that are <u>unique to each sample</u>. These types of measurements should NOT be designated as factors.

Assign every column(below) as 'Subject ID'(optional), 'Sample ID'(required:1 and only 1), 'Factor'(required:at least 1) or 'Other'(optional additional sample data). Columns assigned 'Ignore' will be ignored.
Assign each column as "Subject_ID",

Process study desig	n data Does subr	nission contain ra	w data?: 🗸 🗸 🗸			_"Sample_ID", "Fa	ctor", "Raw file	
×	~	~	~	×		name", "Other" or "Ignore"		
Subject_ID	Sample_ID	Genotype	Treatment	Batch	RAW_FIL	E_NAME		
CA11	CA11W0	Wild-type	Control	1a	SC_20190	0410_CA11W0.mzML		
CA12	CA12W0	Wild-type	Control	1a	SC_20190	0410_CA12W0.mzML		
CA13	CA13W0	Wild-type	Control	1a	SC_20190	0410_CA13W0.mzML		
CA11	CA11W50	Wild-type	50uM	1a	SC_20190	0410_CA11W50.mzML		
CA12	CA12W50	Wild-type	50uM Process study design data Does submission contain raw data?: Yes					
CA13	CA13W50	Wild-type	50UM Subject_ID	✓ Sample_ID ✓ Fac	tor v	Factor V Other	✓ Raw file name ✓	

After editing/assignment, proceed by clicking on "Process study design data"

	Process study desig	n data Does subr	nission contain ra	w data?: Yes 🗸		
┝	Subject_ID ~	Sample_ID ~	Factor ~	Factor ~	Other ~	Raw file name 🗸
Subject_ID Sample_ID Genotype Treatment Batch RAW_FILE_NAME						
	CA11	CA11W0	Wild-type	Control	1 a	SC_20190410_CA11W0.mzML
	CA12	CA12W0	Wild-type	Control	1 a	SC_20190410_CA12W0.mzML
	CA13	CA13W0	Wild-type	Control	1 a	SC_20190410_CA13W0.mzML
	CA11	CA11W50	Wild-type	50uM	1 a	SC_20190410_CA11W50.mzML
	CA12	CA12W50	Wild-type	50uM	1a	SC 20190410 CA12W50.mzML

Decision point: MS or NMR experiment?

Select analysis type: MS	~
Select	

If MS is chosen, the user is prompted to enter chromatography information

Choose number of chromatography methods for which you have data (default=1)

Number of chromatography methods used for which you have data: 1	Y
Add Chromatography metadata	
Example: If only GCMS or RP-LCMS was used, select "1" (default) If both HILIC and RP chromatography were used, select "2"	

Chromatography information

Metadata related to chromatography (LC/GC) protocols

Chromatography information Add Chromatography metadata Reset Fields Chromatography method 1 1/min with a gradient from \mathbf{A} 99.9%A to 98%B where buffer A Chromatography Summary is 1% acetonitrile in 0.1% formic acid and buffer B is Chromatography Type: Reversed phase v or (new): Instrument Name: Waters Acquity UPLC Column Name: Acquity BEH HSS T3 (2.1x 100mm x 1.8 um) Flow Gradient: 100% acetonitrile Flow Rate: 400ul/min Column Temperature: Methods Filename: Solvent A: 1% acetonitrile in 0.1% formic acid Solvent B: 100% acetonitrile

Chromatography Comments:			
Upload Chromatography Methods File(s)	Browse	No file selected.	

User may upload a methods/protocol file relating to chromatography

Number of MS conditions per chromatography method

In the case of LCMS this is typically 2 (Positive and negative ion mode)

mwTab identifier: efahy_20151117_182353	
Number of MS conditions per chromatography method used for which you	have data: 2 🗸
Add MS metadata	
Example: If you have GCMS data in positive ion mode only, select "1" (defined in the select "2" If you have both positive and negative ion mode LCMS data, select "2"	ault)

MS information

Metadata related to MS methods

The number of data columns will equal the number of chromatography conditions multiplied by the number of MS conditions. For example, if reversed-phase and HILIC chromatography were specified in conjunction with 2 MS modes (+ and – mode detection), then 2x2=4 columns are displayed

Hint: Fill out the parameters in the column on the left only, click the "Replicate.." button to copy the content to the other columns, then adjust any unique values as appropriate

dd MS metadata Reset				
MS analysis fields Ch	n.:Reversed phase (1)	Ch.:Re	versed phase (2)	^
				>
Instrument Name:	Thermo Q Exactive Orbitrap	~	Thermo Q Exactive Orbitrap	
Instrument Type:	Orbitrap 🗸		Orbitrap 🗸	
MS Type:	ESI 🗸		ESI v	
Ion Mode:	POSITIVE V		NEGATIVE V	
MS acquisition Comments: Data processing Comments: Software/procedures used for feature assignments:	Raw data were processed using <u>TraceFinder</u> 3.3 software (<u>Thermo</u> Fisher Scientific; <u>Waltham</u> , MA) and <u>Progenesis QI</u>		Raw data were processed using <u>TraceFinder</u> 3.3 software (<u>Thermo</u> Fisher Scientific; <u>Waltham</u> , MA) and <u>Progenesis</u> QI	
Laboratory Name:				
Operator Name:				
Detector Type:				
Software Version:				
Acquisition Date:				
Analysis Protocol File:				
Acquisition Parameters File:				
Processing Parameters File:				~
				>

Enter processed data for each chromatography/MS combination that you have specified

Decision point: Targeted or untargeted data?

Option1: Measurements for named metabolites from targeted experiments, e.g. GC-MS analyses or LC-MS assays with known standards.

Option2: Measurements from **untargeted** experiments e.g. high-resolution LC-MS analyses. Detected features are typically m/z-retention time values

Input Data in tab-delimited f First column must contain met Subsequent columns must cor First row must contain sample	ormat in the tex abolite names. ntain sample dat names.	t area below. a with identical sample n	names as in Study Des	sign submission.
Tabular results are pasted into	(typically this texta	tens or hundr area	eds of name	d metabolites)
Units of measurement (requ	ired): xxx		Dalata aviting mate	
	See examples of	metabolite data layout	Delete existing meta	A file of tabular results
OPTION 2: Untargeted as	says <u>not</u> con	taining identified (n	amed) metabolites	(typically thousands of unidentified features) is
DPTION 2: Untargeted as e.g. datasets with m/z,retentio Add/replace results as a tab- deally, feature names should MPORTANTI: If unidentified	ssays <u>not</u> con on time features f delimited text fi d be formatted a featues are liste	taining identified (n from LC-MS experiments ile: as 'm/z underscore rete d by neutral mass rath	amed) metabolites s, NMR binned data) ention time', e.g. 645. her than m/z ratio, thi	 (typically thousands of unidentified features) is uploaded here ⁵³²⁷_s must be specified in the menu below
OPTION 2: Untargeted as (e.g. datasets with m/z, retention Add/replace results as a tab- deally, feature names should MPORTANT!: If unidentified to This will enable analysis of to Units of measurement (requ	ssays <u>not</u> con on time features f -delimited text f d be formatted a featues are liste he dataset by a ired):	taining identified (n from LC-MS experiments ile: as 'm/z underscore rete d by neutral mass rath larger number of tools Feature names contain (required):	amed) metabolites s, NMR binned data) ention time', e.g. 645. her than m/z ratio, thi s on the Metabolomic n m/z values*?	s (typically thousands of unidentified features) is uploaded here 5327_ s must be specified in the menu below the Workbench Feature names contain retention time values (required): Time units:

Option1: Processed data upload: Review in tabular form, then Upload data Targeted data

Note: sample names must match those submitted in the "study design" section, otherwise a warning will be generated and this must be resolved before proceeding

PGF2a 28.8	30.4 30.7	37.9 61.3	10.2 /0.3	/8.2 23.6	81.7 57.	3	
PGJ2 32.3	76.8 48.5	70.5 1.9	29.7 92.1	94.5 75.1	92.0 82.	1	
stearic acid	29.3 57.1	16.3 78.8	67.5 14.6	85.3 94.4	63.9 16.	3 12.5	
Stearidonic aci	d 92.8	49.0 49.0	90.4 72.6	21.9 54.1	6.3 26.	6 97.9 77	7.4 🗸
Tricosanoic aci	d 4.8	36.1 27.5	24.9 67.1	0.4 50.8	23.0 13.	3 82.4 85	5.3 _{.::}
Units of measurer	<mark>nent:</mark> pmoles/l						
View/check metal	oolite data See	e examples of me	tabolite data layou	ıt			
metabolite_nam	e BCJ080212A0	1 BCJ080219A0	1 BCJ080226A01	BCJ080212A22	BCJ080219A22	BCJ080226A22	BCJ0802
Margaric acid	3.5	25.6	85.5	43.9	47.9	29.5	72.1
Myristic acid	2.6	85.0	81.0	22.9	46.3	91.9	26.1
Oleic acid	20.2	28.5	1.0	11.1	95.4	69.7	84.2
Palmitic acid	16.0	7.2	10.6	70.1	28.0	62.5	80.1
Pentadecanoic							

Metabolite metadata upload

Copy/paste metabolite annotations in tabular format (PubChem CID, KEGG ID, InCHi Key, LC/GC retention time/index, etc.) Metabolite names MUST match those submitted in the previous data section. If you don't have any metabolite annotations, just submit the column of metabolite names.

mwTab identifier: efahy_20151117_182353						
Metabolite metadata in tab-delimited format. First column must contain metabolite names						
Subsequent columns should contain KEGG PubChem identifiers, retention index quantitated	dm/ze	etc				
First row must contain headings	u 111/2, c					
Matabalita Nama Dubahan Id						
Metabolite Name Publice Id Kedd Id						
Margaric acid 10465 -	Г	scearre at	10 JZ01	001000	0	
Myristic acid 11005 C06424		Stearidoni	c acid	528283	37 C16300)
01e1c acid 445639 CU0/12		TITCOSanoi	c aciu	17085		
Palmitic acid 985 CUU249						
Pentadecanoic acid 13849 C16537						
PGD2 448457 C00696		View/check	metabolite dat	ita Se	e example	es of metabolite data layout
PGE2 5283116 C00584						
PGF2a 5280363 -		Upload met	abolite metada	ata		
PGJ2 5311211 C05957		metabolite_	name Pub	chem Id	Kegg Id	
stearic acid 5281 C01530		Margaric ac	id 1046	65 ·	-	
		Myristic acid	1100	05	C06424	
View/check metabolite metadata		Oleic acid	4456	639	C00712	
View check metabolite metadata		Palmitic aci	d 985		C00249	
		Pentadecar	ioic acid 1384	49	C16537	
After sheeling the table of match alite annotations alight		PGD2	4484	457	C00696	
After checking the table of metabolite annotations, click /		PGE2	5283	3116	C00584	
"Unload metabolite metadata"		PGF2a	5280	0363	-	
		PGJ2	5311	1211	C05957	

Option2: Untargeted data Measurements from untargeted experiments e.g. high-resolution LC-MS analyses are uploaded as a tab-delimited text file containing a table of unidentified features (typically m/z-retention time values) and associated measurements.

OPTION 2: Untargeted assays <u>not</u> containing identified (named) metabolites									
(e.g. datasets with m/z, retention time features from LC-MS experiments, NMR binned data)									
Add/replace results as a tab-delimited text file: Ideally, feature names should be formatted as 'm/z underscore retention time', e.g. 645.5327_24.91 IMPORTANT!:If unidentified featues are listed by neutral mass rather than m/z ratio, this must be specified in the menu below This will enable analysis of the dataset by a larger number of tools on the Metabolomics Workbench									
Units of measurement (required):	Feature names contain m/z values*?	Feature names contain retention time values?							
Peak area	(required): Yes ~	(required): Yes V Time units: Minutes V							
* By "m/z values" we are referring to mass-	to-charge ratios and NOT neutral masses								
Upload tab-delimited datafile Browse jwa	lejko_20181204_201054_mwtab.txt								
The first line in the submitted file should conta	in sample names exactly matching those that	t you submitted in the 'Study Design' section.							

E C:\	Users\eoinf\Downloads\untargeted_da	ta_table.txt				
1	Feature(m/z_RT)	samp1	samp2	samp3	samp4	sam
2	100.02005_15.5	8875.5	9273.9	1559.0	1160.0	894
3	100.07742_65.4	2744.3	2152.3	6895.3	9465.8	212
4	101.06952_73.9	6646.6	3736.5	1458.4	9832.6	653
5	102.08992_29.2	4164.2	2195.9	8447.9	1920.1	274
6	102.08983_25.0	8187.6	8647.8	4984.4	9747.3	741
7	103.05251_42.6	2432.0	2431.9	4988.6	3383.4	820
8	103.78777_17.7	5714.7	3217.8	4914.0	8954.6	414
9	104.05150_20.6	9814.3	8541.1	6641.6	2744.3	215
10	104.06962_16.9	1481.1	1368.9	2780.0	2206.6	513
11	104.10595_11.6	5430.2	6389.2	8495.9	9654.2	848
12	104.10562_72.7	2614.9	2431.9	2140.9	9045.2	155
13	104.99081_88.7	6193.2	5506.5	7210.6	5457.4	991
14	106.04841_24.7	5995.0	8896.7	4185.6	2675.6	556
15	106.08454_13.2	2862.1	9659.3	2016.6	1539.5	527
16	108.01019_20.6	5768.7	4539.3	4992.9	1156.6	166
17	109.09961_16.9	4128.3	5113.5	6015.4	8823.3	348
18	110.05838_71.2	9221.6	1079.8	7146.5	8210.4	155
19	110.06358_79.4	5995.0	8896.7	1570.0	2258.1	991
20	110 10667 56 9	602.8	1942.7	4983 4	1102 9	556

Select results file from your file system. Sample names should exactly match those submitted in the "Study Design" section of the metadata submission

Example of a file with untargeted MS data. Note the 1st column contains m/z_retention time features. Subsequent columns contain measurements for each sample.
Decision point: MS or NMR experiment?

NMR option

mwTab identifier: efahy_20151112_14194	49
nmr information	Add nmr metadata Reset
Instrument Name:	Bruker Avance III
Instrument Type:	FT-NMR ¥
NMR Experiment Type:	1D-1H v
NMR Comments:	
Field Frequency Lock:	Deuterium
Standard Concentration:	0.5 mM
Spectrometer Frequency:	950 MHz
NMR Probe:	cryo, inverse
NMR Solvent:	D2O
NMR Tube Size:	5mm x 7 in
Shimming Method:	Topshim

NMR experiment option

Add NMR results data

View/download the completed mwTab files

These are saved in the user's login area

#METABOLOMICS WORKBENCH	efahy_20151117_; 1	182353
CREATED ON	November 17, 20	15. 6:23 pm
#PROJECT	101010002 21, 20	10, 0120 pm
PR:PROJECT TITLE		LIPID MAPS Lipidomics studies
PR:PROJECT TYPE		MS quantitative analysis
PR:PROJECT_SUMMARY		Multi-center quantitative lipidomics s
PR:PROJECT SUMMARY		sources (LIPIDMAPS)
PR:INSTITUTE		University of California, San Diego
PR:DEPARTMENT		Bioengineering
PR:LABORATORY		Multiple centers
PR:LAST NAME		Fahy
PR:FIRST NAME		Eoin
PR:ADDRESS		9500 Gilman, La Jolla, CA, 92093, USA
PR:EMAIL		efahy@ucsd.edu
PR: PHONE		858-534-4076
PR:FUNDING SOURCE		NIGMS
#STUDY		
ST:STUDY_TITLE		Timecourse on RAW 264.7 cells treated
ST:STUDY_TYPE		Timecourse experiment
ST:STUDY_SUMMARY		Lipidomics studies on macrophages - RA
ST:STUDY_SUMMARY		and compactin. Experiments were conduc
ST:STUDY_SUMMARY		serum. 8-timepoint study: Measurements
ST:STUDY_SUMMARY		24hrs for: (i) compactin, (ii) Kdo2-Li
ST:STUDY_SUMMARY		(iv) control
ST: INSTITUTE		University of California, San Diego
ST:DEPARTMENT		Bioengineering
ST:LABORATORY		Multiple centers
ST:LAST_NAME		Fahy
ST:FIRST NAME		Eoin

The "View Online " link allows users to view and analyze the study to review the data/metadata. This viewer simulates how the study will appear on the Metabolomics WorkBench after NMDR curation and database upload

hetabolomics Workbench		BOLC K B E N	You are logge MCS CH Search the Metabolomics Workbench	ed in as efahy Log out Search				
Home Metabo	Iomics Update Data Standards	Resources NI	H Metabolomics Training About	Personnel				
Overview Brow	rse / Search Analyze Upload and Mar	Chromatography:		s and experime	ental v	ariables (facto)	rs): (Factor	headings shown
llear data from	n mwTah filo		High resolution separation was done using an Acquity UPLC sys	Sample	Hours	Compactin (uM)	KLA(ng/ml)	Sampledata
Show named m	natabolites	Summary	column from Waters. Column flow was set to 400 l/min with a gra buffer B is 100% acetonitrile. A column temp of 43 degrees Cels	BCJ080212A02	0.5	0	0	
Show hamed h	letabolites	Chromatography	Reversed phase	BCJ080219A02	0.5	0	0	
Select appropriate	a tab below to view each metadata section;	Туре		BCJ080226A02	0.5	0	0	
		Instrument Name	Waters Acquity UPLC	BCJ080212A04	0.5	0	100	
All Projec	t study subject sample	Column Name	Acquity BEH HSS T3 (2.1x 100mm x 1.8 um)	BCJ080219A04	0.5	0	100	
		Flow Gradient	100% acetonitrile	BC-1080226A04	0.5	0	100	
Project:		Flow Rate	400ul/min	BC 1080212403	0.5	50	0	
Project Title	LIPID MAPS Linidomine studies	Solvent A	1% acetonitrile in 0.1% formic acid	DC 1000212A03	0.5	50	0	
Project Type	MS quantitative analysis	Solvent B	100% acetonitrile	BCJ080219A03	0.5	50	0	
Project Summary	Multi-center quantitative linidomics studies on			BCJ080226A03	0.5	50	0	
Institute	University of California. San Diego	Analysis:		BCJ080212A05	0.5	50	100	
Department	Bioengineering			BCJ080219A05	0.5	50	100	
Laboratory	Multiple centers	Analysis Type	MS	BCJ080226A05	0.5	50	100	
Last Name	Fahy	Instrument Name	ABI 4000 QTRAP	BCJ080212A01	0	0	0	
First Name	Eoin			BCJ080219A01	0	0	0	
and the second			-	BC-1080226A01	0	0	0	

The "View Online " link allows users to perform analysis on their datasets via the mwTab format prior to NMDR registration and database upload

Edit your Data Submission (DataTrack_ID)

Resume submission or edit an existing submission from the "List Data Uploads" section at https://www.metabolomicsworkbench.org/data/DRCCDataDeposit.php

Uploa	id and M	lanage	Exp	erimenta	l Data and	d Metadata				
Overvie	verview New Data Upload List Data Uploads Test Upload Tutorials									
Summa Please se results for	ummary of uploaded data sets ease select an appropriate Datatrack ID from the table below to upload adartitional raw data files or select an appropriate mwTab Filename to edit metadata and sults for already registered data.									
DataTra ID (uplo: raw data	ck ad Study ID a)	Date Submitted	Data Type	mwTab FileName (edit study)	Archiv Filer ame	User Comments	Data Review Status	Data Review Comments	Uploaded Files	
2880 Upload		2021-10-07	Target edMS	amat_20211007 _101611_my .txt Edit study	Tissue TCA	-	Incomplete - Needs further action Respond	Hello, we have reviewed your study. Can you please update the	-	
1559 Upload	ST001089	2018-11-05	Target edMS	amat_20181105 _073530_mwtab .txt	Taurine data upload1105201 8	Not sure what the following refers to? CRC_25102018.7Z is	Complete - No further action required	Upload confirmed. Please ignore those comments.	MS.zip (7.9M)	
									Book1.xlsx (16K)	

• Upload raw data for a submission by clicking on the Upload button

Edit your Data Submission

Resume submission of a new study or edit an existing study from the online GUI at http://www.metabolomicsworkbench.org/data/ds_main.php

Start/Edit Data Submissi	on Examples of study design and data layouts Upload and Manage Data Tutorial(pdf)		
To start new study sub	mission return to the New study registration page Use "Edit	mwTab"	link
List of stored mw	Tab files for user efahy and group members (most recent first)		
Click on 'Edit mwtab' lir	ik to resume editing that file		
Sort by modified date	Sort by user, filename Filter		
	efahy_20160407_091057_mwtab_analysis_1.txt	View mwTab	View online
Test study title EF	efahy_20160407_091057_mwtab.txt	View mwTab	Edit mwTab
Test Study	ivadivelu_20160404_160548_mwtab.txt	View mwTab	Edit mwTab

Study editing interface: Jump to section of interest

Start/Edit Data Submiss	ion Examples of study design and data layouts Upload and Manage Data Tutorial
Jump to: Project	Study Subject Study Design Collection Treatment Sampleprep Chrom. MS Data(Results) Finalize
project information	Add project metadata Reset
Project Title	: LIPID MAPS Lipidomics studies
Project Type	MS quantitative analysis
Project Summary	Multi-center quantitative lipidomics studies on samples from human and murine sources (LIPIDMAPS)
Institute	University of California, San Diego
Department	Bioengineering
Laboratory	Multiple centers
Last Name	Fahy
First Name	Eoin
Address	: 9500 Gilman, La Jolla, CA, 92093, USA
Email	efahy@ucsd.edu

Upload your raw and supplementary data via a standalone FTP client Your raw data should be submitted as a compressed file (.zip, .7Z, .gz, etc) IMPORTANT! Please upload raw data in open-source format (e.g. mzML, mzXML, CDF) if at all possible to enable re-use and re-analysis by other researchers Please do not upload individual raw files- combine them in a single compressed archive (.zip,.7z)

Upload additional files for already registered data with data track ID 3109

Please review the following information before you continue to upload data to remote directory 77/DataTrackID3109:

 Raw data upload: IMPORTANT! Please upload raw data in open-source format (mzML,mzXML,CDF) if at all possible to enable re-use and re-analysis. Please do not upload individual raw files- combine them in a single compressed archive (.zip,.7z) first. Compressed (zip, 7z) data files are selected and uploaded to the NMDR FTP server through a FTP client. A variety of free and commercial standalone file transfer clients exist to upload large data files directly to the FTP servers: FileZilla P, WinSCP P, etc. The usage of FileZilla is recommended for uploading data to the NMDR.
 Use the following credentials to upload data to the NMDR: Server Name: www.metabolomicsworkbench.org
 User Name: drccupload
 Password will be visible when you navigate to the appropriate datatrack id in your data upload list

• After connecting to the NMDR FTP server, please change remote directory to 77/DataTrackID3109 before uploading the compressed (zip, 7z) data file.

Upon completion of registration, your dataset is entered in the NMDR processing queue where it will be curated and uploaded on the Metabolomics WorkBench public website (depending on embargo conditions)

NMDR: DIFFERENT SUBMITTED NAMES for the same metabolite

lysoPhosphatidylcholine acyl C16:0 lysoPC 16:0; [M+H]+@1.47 LysoPC (16:0) R1 lysoPC 16:0; [M+H]+@1.55 LPC 16:0 lysoPC 16:0; [M+H]+@1.80 lysoPC 16:0; [M+Na]+@1.95 Lyso-PC(16:0) Hexadecanoyl-sn-glycero-3-phosphocholinepalmitoylglycerophosphocholine palmitoylglycerophosphocholine (16:0) Palmitoyl-Gpc (16:0) LPC C16:0 LPC(16:0) LPC(16:0) [sn1] LPC(a-16:0) LPC(a-16:0)-1 LPC(a-16:0)-2 LysoPC (16:0) LysoPC (16:0) R2 LysoPC(16:0) PALMITOYLGLYCEROPHOSPHOCHOLINE PALMITOYLGLYCEROPHOSPHOCHOLINE (*) PC(16:0 0:0) ... etc

RefMet (A Reference list of Metabolite names): what is it?

A standardized reference nomenclature for metabolite species identified in metabolomics experiments.

Why do we need it?

There's a huge amount of diversity in reporting names of metabolite species detected by MS and NMR analyses. Having a standardized nomenclature is an essential prerequisite for the ability to compare and contrast metabolite data across different experiments and studies, and also to link to other key resources such as data integration, biochemical pathways, chemical classification and systems biology objectives.

How is it implemented?

A set of over 2,000 studies with over 350,000 named metabolites deposited on the Metabolomics Workbench has been leveraged to generate a highly curated **analytical chemistry-centric database** of common names for metabolite structures and isobaric species. All entries are linked to a metabolite classification system. RefMet is searchable and may be freely downloaded. A name-conversion user interface is provided where users can submit a list of metabolite names and map them to the corresponding RefMet names.

RefMet standardized metabolite nomenclature

Home	Data Repository	Databases	Protocols	Tools	Training / Even	ts☞ Abo	ut
Overview	Metabolite Database	Overview			te	arnal Metab	
Over view	Wetabolite Database	Metabolite Da	itabase			and wetab	010
Ref	Met: A Refere	Human Metak	olome Gene/l	Protein D	atabase (MGP)		
		RefMet: Refe	rence List of M	/letabolite	Names		
The n	nain objective of RefMe	External Meta	bolomics Data	abases (L	inks) ^h	discrete me	eta
spect	roscopic techniques in r	metabolomics ex	periments. Inis	s is an ess	ential prerequisite	for the ab	ilit
expe	riments and studies. T	he use of identif	iers such as Pul	bChem co	mpound id's and InC	ChiKeys offe	ers
deper	nding on parameters suc	ch as the salt for	m and degree o	of stereoch	emical detail. In add	lition, many	/ m
metho	ods as discrete structure	es but rather as i	sobaric mixture	s (such as	PC 34:1 and TG 54	:2). To this	en
NMR	studies on the Metabolo	omics Workbenc	h has been use	d as a star	ting point to genera	te a highly o	cur
metal	oolite structures and iso	baric species. A	ditionally, the v	ast majorit	ty of these names h	ave been lir	nke
of LIF	ID MAPS 🖗 and Class	syFire 🖗 classi	fication methods	s. A name-	-conversion user inte	erface is pro	ovi
map t	hem to the corresponding	ng Refmet name	s. This <mark>i</mark> s a			RefMet: A R	ofo

map them to the corresponding Refmet names. This is a currently map to RefMet identifiers. Nevertheless, RefMe "meta-analysis" and systems biology objectives for the n

- Browse/Search/Download Refmet
- · Convert(map) a list of metabolite names to R
- Help on RefMet
- · Lipid Notation in RefMet and lipid m/z calcula
- Mobile phone apps (App. links are active on photon of NMDR metabolite summary app. Search summary table sorted by frequency of determine of the search app. Search RefMet by (p)
 - RefMet name conversion app. Convert
 - RefMet MS search app. Search RefMet
 - Lipid mass/formula app. Calculate lipid
 View Screenshot
- Run as Shiny app on local R installation
 - RefMet name search Shiny App
 - RefMet MS search Shiny App
- Reference: RefMet: a reference nomenclatur

RefMet: A <u>Ref</u>erence set of <u>Met</u>abolite names

(A total of 154667 compounds or isobaric mixtures as of 04/23/21) Show all Structure search Download RefMet Convert metabolite names to RefMet Help on RefMet

InChIKey:	Mol. Formula	:	Exact mass:	: 0.1 ~ +/- Da	tons Sear	ch
Name: Contains v	Super class(?)	:	Main class(?):	Sub class(?):	Rese	t
Metabolite name MONA MS spectra	PubChem CID	Super class	Main class	Sub class	Formula	Exact mass
10,11-DiHDPE	16061145 🗗	Fatty Acyls	Docosanoids	Docosanoids	C ₂₂ H ₃₄ O ₄	362.2457
10,11-Dihydro-12-oxo-Resolvin E1	53477458 r	Fatty Acvis	Eicosanoids	HETE	C ₂₀ H ₃₀ O ₅	350.2093
10,11-Dihydro-Re			Eicosanoids	HETE	C ₂₀ H ₃₂ O ₅	352.2250
10,11-Dimethoxyt		0	Harmala alkaloids	Harmala alkaloids	C ₂₉ H ₃₇ N ₃ O ₂	459.2886
10(11)-EpDPE			Docosanoids	Docosanoids	C ₂₂ H ₃₂ O ₃	344.2351
10,11-Epoxy-chlo			Eicosanoids	Clavulones	C21H29CIO5	396.1704
10,12,15-Octadec			Fatty acids	Unsaturated FA	C ₁₈ H ₃₀ O ₂	278.2246
10,22-Dimethyldo			Hydrocarbons	Hydrocarbons	C ₃₄ H ₇₀	478.5478
10-Deacetyl-2-debenzoyibaccatin m	-Epoxy-chlorovulone I	Frenor Lipius	Isoprenoids	Taxanes	C ₂₂ H ₃₂ O ₉	440.2046
10-Deoxymethymycin	5282032 🗗	Polyketides	Macrolides and analogues	Macrolides	C ₂₅ H ₄₃ NO ₆	453.3090
10-Deoxymethynolide	5282031 구	Polyketides	Macrolides and analogues	Macrolides	C ₁₇ H ₂₈ O ₄	296.1988
10-HDoHE MS spectra	11537494 🗗	Fatty Acyls	Docosanoids	Docosanoids	C ₂₂ H ₃₂ O ₃	344.2351
10-Hendecenoic acid	5634 ট	Fatty Acyls	Fatty acids	Unsaturated FA	C ₁₁ H ₂₀ O ₂	184.1463
10-HpODE	5282857 d	Fatty Acyls	Octadecanoids	HpODEs	C ₁₈ H ₃₂ O ₄	312.2301
10-HpOME	13801082 🗗	Fatty Acyls	Octadecanoids	HpOMEs	C ₁₈ H ₃₄ O ₄	314.2457

Check for updates correspondence

RefMet: a reference nomenclature for metabolomics

To the Editor - The past decade has seen an explosive growth in metabolomics, with advances in mass spectrometry (MS) and nuclear magnetic resonance (NMR) enabling the detection of hundreds or even thousands of metabolite species in a single experiment. The wide range of available analytical methods coupled with the even wider range of metabolite databases (vendor-supplied proprietary databases, public-domain databases and private in-house databases) has unfortunately led to a pervasive problem wherein the same metabolite species may be reported by many different names. This nomenclature issue represents a significant barrier for comparative analysis of metabolomics data across studies generated by different institutions and/or platforms1. To this end, a repository of over 280,000 named analytes from over 1,400 MS and NMR studies in the National Metabolomics Data Repository (NMDR) on the Metabolomics Workbench2 has been leveraged to generate a highly curated analytical-chemistry-centric database of common names for metabolite structures and isobaric species. This Reference Set of Metabolite Names (RefMet) has been linked to a metabolite classification system, with numerous positive outcomes including data-sharing potential, facilitation of meta-analysis across studies, and integrated statistical analysis. RefMet is composed of four groups of annotations (Supplementary Table 1):

1. Annotations with complete structural

characterization of regiochemistry

Fig. 11 Overview of the central role of RefMet in the Metabolomics Workbench infrastructure, a, Metabolitis monitations reported in studies submitted to the NMOR are used as a key data source for development of the RefMet database. Metabolite names in each study in turn are harmonized and converted to their RefMet equivalents, **b**, RefMet names are linked to a database (b) of molecular structures (in the case of entries with defined structures) and to a metabolite classification system (**c**). **d**, **e**, The set of classified RefMet annotations may be used for multiple modes of statistical analysis (**d**) and summary reports (**e**). Reflectemical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Human Metabolome Database (HMDB) that have been supplemented with RefMet annotations are used on the Metabolomics Workbench (WW) to map NMDB study data using pathway enrichment tools, **g**, A RETS service for RefMet enables data-sharing efforts with external metabolinics-related portals.

Fahy, E., Subramaniam, S. RefMet: a reference nomenclature for metabolomics. Nature Methods 17, 1173–1174 (2020).

RefMet annotation levels

Level 1: Complete structure level

Comments Exact structure (including stereochemistry and bond geometry)

Examples: PGE2, 12S-HETE, Cholic acid

Level 2: Regiochemistry level

Comments Known regiochemistry (excluding stereochemistry and bond geometry) Examples: 12-HETE, 3-Hydroxytetradecanoic acid, Hexose

Level 3: Molecular Species level

Comments Information on structural features, but complete regiochemistry unknown Examples: PC 16:0_18:1, Hydroxytetradecanoic acid, Citric acid/Isocitric acid, Leucine/Isoleucine

Level 4: Species level

Comments Metabolite class, number of chain carbons and unsaturations known **Examples: PC 34:1 , TG 54:3 , Cer d42:2 or Cer 42;2;O2**

Metabolite identifications From NMDR

Harmonization, Annotation, Classification

Standardized metabolite nomenclature

Grp 1: Exact structures (chirality, DB geometry) e.g. Alanine, PGE2, 12S-HETE, Cholic acid Grp 2: Known regiochemistry e.g. 12-HETE, 3-Hydroxytetradecanoic acid Grp 3: Partial structures e.g. PC(16:0_18:1), Hydroxytetradecanoic acid Grp 4: Sum-composition e.g. Cer(d42:2), PC(34:1), TG(54:3)

RefMet DB

Metabolite structures from public sources

Database of molecular structures

RefMet Structures Group 1 and 2

Other metabolite structures

Metabolite structure DB

Relationship between RefMet and Metabolite Structure DB

Examples of metabolite names which were mapped to RefMet names in order to enable comparative analysis across studies

https://www.metabolomicsworkbench.org/databases/refmet/

RefMet: A Reference list of Metabolite names

The main objective of RefMet is to provide a standardized reference nomenclature for both discrete metabolite structures and metabolite species identified by spectroscopic techniques in metabolomics experiments. **This is an essential prerequisite for the ability to compare and contrast metabolite data across different experiments and studies**. The use of identifiers such as PubChem compound id's and InChiKeys offers only a partial solution because these identifiers will vary depending on parameters such as the salt form and degree of stereochemical detail. In addition, many metabolite species, especially lipids, are not reported by MS methods as discrete structures but rather as isobaric mixtures (such as PC 34:1 and TG 54:2). To this end, a list of over 380,000 names from a set of over 2,000 MS and NMR studies on the Metabolomics Workbench has been used as a starting point to generate a highly curated **analytical chemistry-centric** list of common names for metabolite structures and isobaric species. Additionally, the vast majority of these names have been linked to a **metabolite classification system** using a combination of **LIPID MAPS** and **ClassyFire** classification methods. A name-conversion user interface is provided where users can submit a list of metabolite names and map them to the corresponding Refmet names. This is a work-in-progress with the caveat that many metabolite names generated by metabolomics experiments will not currently map to RefMet identifiers. Nevertheless, RefMet has the ability to greatly increase the **data-sharing potential of metabolomics experiments** and facilitate "meta-analysis" and systems biology objectives for the majority of commonly encountered metabolite species.

- Browse/Search/Download Refmet
- · Convert(map) a list of metabolite names to RefMet nomenclature
- Help on RefMet
- Lipid Notation in RefMet and lipid m/z calculation tools
- Mobile phone apps (App. links are active on phones only. Save the URLs below as icons on your home screen):
 - NMDR metabolite summary app. Search over 1,500 studies in NMDR by anlytical technique, sample source, species and metabolite class. Retrieve a summary table sorted by frequency of detection of metabolite species, linked to structures and individual NMDR study information.
 - · RefMet search app. Search RefMet by (partial) name and/or neutral mass.
 - RefMet name conversion app. Convert a metabolite name to RefMet nomenclature. Display structure. Calculate m/z.
 - RefMet MS search app. Search RefMet with m/z value.
 - Lipid mass/formula app. Calculate lipid neutral mass and m/z for over 160 lipid species.
 - View Screenshot
- Run as Shiny app on local R installation
 - RefMet name search Shiny App
 - RefMet MS search Shiny App
- Reference: RefMet: a reference nomenclature for metabolomics (Nature Methods, 2020) 🗗

Currently, there are over 160,000 metabolite species in RefMet

Convert a list of metabolite names to RefMet nomenclature

Browse/Search/Download Refmet

• Convert(map) a list of metabolite names to RefMet nomenclature

Help on RefMet

Lipid Notation in RefMet and lipid m/z calculation tools

lome	Data Repository	Databases	Protocols	Standards	Tools	Training / Eventsଙ୍	About	Search
erview	Metabolite Database	Human Metabo	lome Gene / Pr	otein Database	RefMet	External Metabolomics	Databases	(Links)
	1							
_								
Ente	er a list of metabo	olite names (one per line	e) for conve	rsion to	RefMet nomencla	ture	
PC 3	х5.2. [М-дс-н]-Q6	77						^
Phos	sphatidvlcholine a	cvl-alkvl C3	6:0					
SM 3	34:2; [M]+@5.65							
Cera	amide d18:0/26:2							
TAG ((54:3)-13C4+15N0[M	1+Na]						
Tril	auroyl-glycerol	-						
PE (a	aa-40:4)							
C32:	0 PC							
Octe	enoyl-L-carnitine							
TG (1	.6:1_17:0_18:1)							
lyso	PC 16:0; [M+Na]+@	90.49						
TAG ((50:8)-13C30[M+Na]							
PE (3	39:4) [M-H]R2	_						
PC (3	36:3)-13C3+15N0[M+	-Na]						
PE-p	omg(40:6)-13C0[+NH	14]+						
PA (3	34:1)-13C0							
SQDG	3 43:1							
	(3:0)-13C5[+K]+							
DAG ((44:7)-I3CU[M+H] (C20:1:2)							~
DF 2	(CZU.1;Z) 20.5 [M_H]_							
PE 3	ю.J [M-П]-							

Submit Reset

Metabolite name-to-RefMet conversion results

Return to RefMet conversion form				
Download standardized names and annotations	as tab-delimited text (including	classification)		
Input name	Standardized name	Formula	Exact mass	Sub class
1-oleoyl-GPI (18:1)	LPI 18:1	C27H51O12P	598.3118	LPI
2'-Deoxyuridine	Deoxyuridine	C9H12N2O5	228.0746	Pyrimidine deoxyribonucleosides
2-eicosapentaenoylglycerophosphoethanolamine*	LPE 20:5	C25H42NO7P	499.2699	LPE
4-hydroxyphenylpyruvate	4-Hydroxyphenylpyruvic acid	C9H8O4	180.0423	Phenylpyruvic acid derivatives
acetylcarnitine	CAR 2:0	C9H17NO4	203.1158	Acyl carnitines
Acylcarnitine (C10:0) [M+H]+	CAR 10:0	C17H33NO4	315.2410	Acyl carnitines
Adenosine triphosphate	ATP	C10H16N5O13P3	506.9958	Purine rNTP
Asn	Asparagine	C4H8N2O3	132.0535	Amino acids
Butyrylcarnitine	CAR 4:0	C11H21NO4	231.1471	Acyl carnitines
C16:1 SM	SM 18:1;O2/16:1	C39H77N2O6P	700.5519	SM
C32:0 PC	PC 32:0	C40H80NO8P	733.5622	PC
PC(56:8)	PC 56:8*	C64H112NO8P	1053.8126	PC
PC C36:4	PC 36:4	C44H80NO8P	781.5622	PC
CE(18:2); [M+NH4]+	CE 18:2	C45H76O2	648.5845	Chol. esters
CE(23:0) [M+NH4]+	CE 23:0	C50H90O2	722.6941	Chol. esters
Cer(15:0)	-			
Ceramide d18:0/26:2	Cer 18:0;O2/26:2	C44H85NO3	675.6529	DHCer
DAG C36:3	DG 36:3	C39H70O5	618.5223	DAG
DAG(44:7) [M+H]	DG 44:7	C47H78O5	722.5849	DAG
Decanoic acid	Capric acid	C10H20O2	172.1463	Saturated FA
D-Mannonate	Mannonic acid	C6H12O7	196.0583	Medium-chain hydroxy acids
Eicosanoic acid	Arachidic acid	C20H40O2	312.3028	Saturated FA
Erucamide	13-Docosenamide	C22H43NO	337.3345	Fatty amides
FA(16:0)	Palmitic acid	C16H32O2	256.2402	Saturated FA
FFA(C20:1;2)	-			
indolepropionate	3-Indolepropionic acid	C11H11NO2	189.0790	Indolyl carboxylic acids
Isovalerylcarnitine	CAR 4:0;3Me	C12H23NO4	245.1627	Acyl carnitines
Leucyl-Glycine	Leu-Gly	C8H16N2O3	188.1161	Dipeptides
L-Histidine	Histidine	C6H9N3O2	155.0695	Amino acids
lysoPC 16:0; [M+Na]+	LPC 16:0	C24H50NO7P	495.3325	LPC
malate	Malic acid	C4H6O5	134.0215	TCA acids
myristate (14:0)	Myristic acid	C14H28O2	228.2089	Saturated FA
N,N,N-Trimethyllysine_R2	N-6-Trimethyllysine	C9H20N2O2	188.1525	Amino acids
Octenoyl-L-carnitine	CAR 8:1	C15H27NO4	285.1940	Acyl carnitines

RefMet Search Page

Search by: Exact mass, Formula, Name, chemical class, InChI Key, structure

Browse/Search/Download Refmet		RefMet:		ce set of Metabolite	names				
• Convert(map) a list of metabolite names to RefMet nomend		Refinet.	A <u>Kel</u> elell	ce set of <u>met</u> abolite	liallies				
Help on RefMet	(A total of 154667 compounds or isobaric mixtures as of 04/23/21)								
Lipid Notation in Refmet and lipid m/z calculation tools	Snow all Struct	ure search Do	whicad Retive	t Convert metabolite nan	nes to Retiviet He	ip on Retivet			
	InChIKey:	Mol. Formula	1:	Exact mass:	: 0.1 × +/- Dalt	ons Searc	h		
	Name: Contains	Super class(?):	Main class(?):	Sub class(?):	Reset			
	Metabolite name MONA MS spectra	PubChem CID	Super class	Main class	Sub class	Formula	Exact mass		
	10,11-DiHDPE	16061145 🔂	Fatty Acyls	Docosanoids	Docosanoids	C ₂₂ H ₃₄ O ₄	362.2457		
	10,11-Dihydro-12-oxo-Resolvin E1	53477458 🗖	Fatty Acvls	Eicosanoids	HETE	C ₂₀ H ₃₀ O ₅	350.2093		
	10,11-Dihydro-Re			Eicosanoids	HETE	C ₂₀ H ₃₂ O ₅	352.2250		
	10,11-Dimethoxyt		0	Harmala alkaloids	Harmala alkaloids	C ₂₉ H ₃₇ N ₃ O ₂	459.2886		
	10(11)-EpDPE			Docosanoids	Docosanoids	C ₂₂ H ₃₂ O ₃	344.2351		
	10,11-Epoxy-chlo	- <u>``</u>	\sim	Eicosanoids	Clavulones	C ₂₁ H ₂₉ ClO ₅	396.1704		
	10,12,15-Octaded			Fatty acids	Unsaturated FA	C ₁₈ H ₃₀ O ₂	278.2246		
	10,22-Dimethyldo			Hydrocarbons	Hydrocarbons	C ₃₄ H ₇₀	478.5478		
	10-Deacetyl-2-debenzoyibaccatin m	poxy-chlorovulone l ধনতনত্য ড্রা	Frenor Lipius	Isoprenoids	Taxanes	C ₂₂ H ₃₂ O ₉	440.2046		
	10-Deoxymethymycin	5282032 🗗	Polyketides	Macrolides and analogues	Macrolides	C ₂₅ H ₄₃ NO ₆	453.3090		
	10-Deoxymethynolide	5282031 🗗	Polyketides	Macrolides and analogues	Macrolides	C ₁₇ H ₂₈ O ₄	296.1988		
	10-HDoHE MS spectra	11537494 🔂	Fatty Acyls	Docosanoids	Docosanoids	C ₂₂ H ₃₂ O ₃	344.2351		
	10-Hendecenoic acid	5634 🔂	Fatty Acyls	Fatty acids	Unsaturated FA	C ₁₁ H ₂₀ O ₂	184.1463		
	10-HpODE	5282857 🔂	Fatty Acyls	Octadecanoids	HpODEs	C ₁₈ H ₃₂ O ₄	312.2301		
	<u>10-HpOME</u>	13801082 🗗	Fatty Acyls	Octadecanoids	HpOMEs	C ₁₈ H ₃₄ O ₄	314.2457		
	First Previous 1 2 3	4 5 6 7	Next Last	Go to page	Page 1 o	f 10312			

RefMet detail page for Asparagine

RefMet/Metabolite databases have links to MONA MS spectra

Example: https://www.metabolomicsworkbench.org/data/StructureData.php?RegNo=37135

InChlKey: Mol. Formula Super class(2) Name: Contains oxoglutaric acid \sim PubChem CID Metabolite name | MONA MS spectra Oxoglutaric acid | MS spectra 51 🗗 Metabolite database MW REGNO: 37135 51 🐶 PubChem CID Oxoglutaric acid R 2-oxopentanedioic a Synonyms alpha-ketoglutaric acid; alpha-ketoglutarate; Oxoglutarate [PubChem Synonyms Exact Mass 146.0215 (neutral) Calculate m/z: (Select m/z) Formula: C5H6O5 KPGXRSRHYNQIFN-UHFFFAOYSA-N InChlKey: ClassyFire superclas Organic acids and derivative ClassyFire class: Keto acids and derivative ClassyFire subclass Gamma-keto acids ClassyFire direct par ClassyFire alternative and derivatives; Dicarboxylic acids and derivatives; Alpha-keto acids and Cart anic oxides; Hydrocarbon derivatives; MoNA MS spectra View spec Studies Available studies

RefMet database

Massbank ID	Metabolite	Instrument	Inst. type	MS type	Collision energy	lon type	lon mode	MS level
FiehnLib000378 🗗	Oxoglutaric acid	Leco Pegasus IV		EI	-	-	Positive	MS1
KZ000080 🗗	Oxoglutaric acid	Pegasus III TOF-MS system, Lec	-	EI	-	-	Positive	MS1
OUF00113 🗗	Oxoglutaric acid	Pegasus III TOF-MS system, Lec		EI	-	-	Positive	MS1
PR010210 🗗	Oxoglutaric acid	Pegasus III TOF-MS system, Lec	-	EI	-	-	Positive	MS1
HMDB00208_1231 🗗	Oxoglutaric acid	Pegasus III TOF-MS system, Lec	-	EI	-	-	Positive	-
HMDB00208_1263 🗗	Oxoglutaric acid	Pegasus III TOF-MS system, Lec		EI	-	-	Positive	-
KO001528 🗗	Oxoglutaric acid	API3000, Applied Biosystems	LC-ESI-QQ	ESI	10 V	[M-H]-	Negative	MS2
KO001529 🗗	Oxoglutaric acid	API3000, Applied Biosystems	LC-ESI-QQ	ESI	20 V	[M-H]-	Negative	MS2
KO001530 🗗	Oxoglutaric acid	API3000, Applied Biosystems	LC-ESI-QQ	ESI	30 V	[M-H]-	Negative	MS2
KO001531 🗗	Oxoglutaric acid	API3000, Applied Biosystems	LC-ESI-QQ	ESI	40 V	[M-H]-	Negative	MS2
KNA00530 🗗	Oxoglutaric acid	LTQ Orbitrap XL, Thermo Scient	LC-ESI-ITFT	ESI	35eV	-	Negative	MS1
KNA00700 🗗	Oxoglutaric acid	LTQ Orbitrap XL, Thermo Scient	LC-ESI-ITFT	ESI	35eV	-	Negative	MS1
KNA00531 🗗	Oxoglutaric acid	LTQ Orbitrap XL, Thermo Scient	LC-ESI-ITFT	ESI	35eV	-	Negative	MS2
KNA00533 🗗	Oxoglutaric acid	LTQ Orbitrap XL, Thermo Scient	LC-ESI-ITFT	ESI	35eV	-	Negative	MS2
KNA00701 🗗	Oxoglutaric acid	LTQ Orbitrap XL, Thermo Scient	LC-ESI-ITFT	ESI	35eV	-	Negative	MS2
KNA00702 🗗	Oxoglutaric acid	LTQ Orbitrap XL, Thermo Scient	LC-ESI-ITFT	ESI	35eV	-	Negative	MS2
PS037807 🗗	Oxoglutaric acid	TQD, Waters		ESI	10	-	-	
HMDB00208_337	Oxoglutaric acid	TQD, Waters	Quattro_QQQ	ESI	10eV	-	Negative	-
нмра 38 🗗	Oxoglutaric acid	TQD, Waters	Quattro_QQQ	ESI	25eV	-	Negative	-
339 🗗	Oxoglutaric acid	TQD, Waters	Quattro_QQQ	ESI	40eV	-	Negative	
5002 998 🗗	Oxoglutaric acid	TQD, Waters	-	-	-	-	-	-

Listing of MONA spectra for metabolite

RefMet Metabolite Classification

RefMet classification at superclass, main class and sub class levels available for each study in Analysis Toolbox

Example: see pie-charts at https://www.metabolomicsworkbench.org/data/stats_toolbox.php?STUDY_ID=ST001140

Central role of RefMet on the Metabolomics Workbench

RefMet: What are the positive outcomes?

A unifying nomenclature and data integration tool for reporting metabolites detected by analytical methods.

Ability to perform comparative analysis across metabolomics studies.

Exact structures are linked to metabolite structure database.

Comprehensive chemical classification provides numerous advantages for data visualization/statistical analysis.

Integration with biochemical pathway tools enables mapping of RefMet names via systems biology approaches.

Metabolomics Workbench Metabolite structure database ~164,000 metabolite structures and annotations Linked to NMDR studies via RefMet

Metabolite Database

rows	e the	Metabolomics Workbench Met	abolite Database			
tudies' l	ink show	s number of NMDR studies containing that me	tabolite)			
ructure	Studies	Common Name	Systematic Name	PubChem CID	Formula	Exact mass
55	2	10,11-DiHDPE	(+/-)-10,11-dihydroxy-4Z,7Z,13Z,16Z,19Z-docosapent	16061145 🗗	C22H34O4	362.245
50	2	10(11)-EpDPE	(+/-)-10(11)-epoxy-4Z,7Z,13Z,16Z,19Z-docosapentaen	11638767 🗗	C22H32O3	344.2351
87	1	10,11-epoxy-chlorovulone I	methyl 9-oxo-10R-chloro-10,11S-epoxy-12S-hydroxy-5	5283226 🗗	C21H29CIO5	396.1704
6	2	10,12,15-octadecatrienoic acid	10,12,15-octadecatrienoic acid	5282824 🗗	C18H30O2	278.2246
84	1	10,22-Dimethyldotriacontane	10,22-Dimethyldotriacontane	6430363 🗗	C34H70	478.5478
080	2	10-deacetyl-2-debenzoylbaccatin III	10-deacetyl-2-debenzoylbaccatin III	443489 🗗	C22H32O9	440.2046
306	3	10-Deoxymethynolide	(3R,4S,5S,7R,9E,11R,12R)-12-ethyl-4-hydroxy-3,5,7,	5282031 🗗	C17H28O4	296.1988
42	8	(+/-)-10-HDoHE	(+/-)-10-hydroxy-4Z,7Z,11E,13Z,16Z,19Z-docosahexae	11537494 🗗	C22H32O3	344.2351
1	11	10-hendecenoic acid	10-undecenoic acid	5634 🛃	C11H20O2	184.1463
75	1	10-hydroxy-11-dodecenoic acid	10-hydroxy-11-dodecenoic acid	5312746 🗗	C12H22O3	214.1569
09	34	10-hydroxy capric acid	10-hydroxy-decanoic acid	74300 🗗	C10H20O3	188.1412
	1	10-methyl-heptadecanoic acid	10-methyl-heptadecanoic acid	5282600 🗗	C18H36O2	284.2715
8	3	10-methyl-hexadecanoic acid	10-methyl-hexadecanoic acid	5312292 🗗	C17H34O2	270.2558
83	2	10-Nitrolinoleic acid	10-nitro,9Z,12Z-octadecadienoic acid	5282259 🗗	C18H31NO4	325.2253
85	9	10-nitrooleic acid	10-nitro-9E-octadecenoic acid	24836820 🧬	C18H33NO4	327.2410
85	6	10-oxo-decanoic acid	10-oxo-decanoic acid	79686 🗗	C10H18O3	186.1256
62	1	10S,17S-DiHDoHE	10S,17S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexa	11667655 🗗	C22H32O4	360.2301
1	27	10Z-heptadecenoic acid	10Z-heptadecenoic acid	5312435 🗗	C17H32O2	268.2402
87	11b	eta 21-Dihvdroxy-5beta-pregnane-3.20-dione	+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraeno	16061121 🗗	C20H32O4	336.2301
16			1,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid	5283146 🗗	C20H34O4	338.2457
58		°	+/-)-11(12)-epoxy-5Z,8Z,14Z,17Z-eicosatetraenoic	16061087 🧬	C20H30O3	318.2195
59		_ 1 OH	1,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid	5283204 🗗	C20H32O3	320.2351
37		HON A	1-amino-undecanoic acid	17083 🗗	C11H23NO2	201.1729
467		$\checkmark \lor \lor$	1b,21-Dihydroxy-5b-pregnane-3,20-dione	44263339 🗗	C21H32O4	348.2301
247		v 🗄	1beta-hydroxyandrost-4-ene-3,17-dione	94141 🗗	C19H26O3	302.1882
how Str	ucture		2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-{[(1S,2S,5R,7S	53480452 🛃	C25H38O9	482.2516
447			1beta-hydroxypregn-4-ene-3,20-dione	101788 🧬	C21H30O3	330.2195
21	/	ヘイノ	-oxo-11S,15S-dihydroxy-5Z,13E-prostadienoic acid	5283061 gP	C20H32O5	352.2250
02	0-	~ . ~	S,11S,15S-trihydroxy-5Z,13E-prostadienoic acid	5280886 🗗	C20H34O5	354.2406
33		н	1-Chloro-8E,10E-undecadien-1-ol	44256516 🗗	C11H19CIO	202.1124

MetaCyc ID:

DESMOSTEROL-CPD

EPA CompTox DB: DTXCID80810725

Browse the Metabolomics Workbench Metabolite structure database

Browse the metabolite database

- Substructure search on metabolite database
- Text search on metabolite database
- Mass (m/z) search on metabolite database

Click on "Studies" link to access studies reporting that metabolite

Study_id	Study_title	Source	Specie
ST000009 🗗	Mixed meal tolerance		Human
ST000010 🗗	Lung Cancer Cells 4	Lung	Human
ST000011 🛃	African Metabolomics		Human
ST000016 🗗	NPM-ALK metabolic regulation	Lymphoma cells	Human
ST000017 🗗	Rat HCR/LCR Stamina Study	Blood	Rat
ST000041 🗗	High PUFA diet in humans	Blood	Human
ST000042 🗗	BALF Control vs ALI by RPLC-MS	Lung	Human
ST000044 🗗	Pilot experiment looking for the existence of certain molecules in pancreatic cancer cells	Pancreas	Human
ST000046 🗗	Identification of altered metabolic pathways in Alzheimer's disease, mild cognitive impairment and cognitively normals using Metabolomics (plasma)	Blood	Human
ST000105 🗗	SCOR Metabolomics	Blood	Human
ST000106 🗗	IWMS Study 1:Weight comparison of obese and lean patients	Blood	Human
ST000286 🗗	Mouse skeletal myotube chronic low-frequency stimulation	Skeletal myotubes	Mouse
ST000291 🗗	LC-MS Based Approaches to Investigate Metabolomic Differences in the Urine of Young Women after Drinking Cranberry Juice or Apple Juice	Urine	Human
ST000403 🗗	Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes	Blood	H
ST000422 🗗	Type 1 Diabetes good glycemic control and controls samples	Blood	Juman

Click on "Structure" link to access metabolite detail page

Browse the Metabolomics Workbench Metabolite Database

('Studies' link shows number of NMDR studies containing that metabolite)

tructure	Studies	Common Name	Systematic Name	PubChem CID	Formula	Exact mass
055	2	10,11-DiHDPE	(+/-)-10,11-dihydroxy-4Z,7Z,13Z,16Z,19Z-docosapent	16061145 🗗	C ₂₂ H ₃₄ O ₄	362.2457
050	2	10(11)-EpDPE	(+/-)-10(11)-epoxy-4Z,7Z,13Z,16Z,19Z-docosapentaen	11638767 🗗	C ₂₂ H ₃₂ O ₃	344.2351
987	1	10,11-epoxy-chlorovulone I	methyl 9-oxo-10R-chloro-10,11S-epoxy-12S-hydroxy-5	5283226 🗗	C21H29CIO5	396.1704
86	2	10,12,15-octadecatrienoic acid	10,12,15-octadecatrienoic acid	5282824 🗗	C ₁₈ H ₃₀ O ₂	278.2246
884	1	10,22-Dimethyldotriacontane	10,22-Dimethyldotriacontane	6430363 🗗	C ₃₄ H ₇₀	478.5478
2080	2	10-deacetyl-2-debenzoylbaccatin III	10-deacetyl-2-debenzoylbaccatin III	443489 🗗	C ₂₂ H ₃₂ O ₉	440.2046
1306	3	10-Deoxymethynolide	(3R,4S,5S,7R,9E,11R,12R)-12-ethyl-4-hydroxy-3,5,7,	5282031 🗗	C ₁₇ H ₂₈ O ₄	296.1988
042	8	(+/-)-10-HDoHE	(+/-)-10-hydroxy-4Z,7Z,11E,13Z,16Z,19Z-docosahexae	11537494 🗗	C ₂₂ H ₃₂ O ₃	344.2351
71	11	10-hendecenoic acid	10-undecenoic acid	5634 🔂	C ₁₁ H ₂₀ O ₂	184.1463
375	1	10-hydroxy-11-dodecenoic acid	10-hydroxy-11-dodecenoic acid	5312746 🗗	C ₁₂ H ₂₂ O ₃	214.1569
309	34	10-Hydroxydecanoic acid	10-hydroxy-decanoic acid	74300 🗗	C ₁₀ H ₂₀ O ₃	188.1412
Ŧ	1	10-methyl-heptadecanoic acid	10-methyl-heptadecanoic acid	5282600 🗗	C ₁₈ H ₃₆ O ₂	284.2715
58	3	10-methyl-hexadecanoic acid	10-methyl-hexadecanoic acid	5312292 🗗	C ₁₇ H ₃₄ O ₂	270.2559
883	2	10-Nitrolinoleic acid	10-nitro,9Z,12Z-octadecadienoic acid	5282259 🗗	C ₁₈ H ₃₁ NO ₄	325.2253
885	9	10-nitrooleic acid	10-nitro-9E-octadecenoic acid	24836820 🗗	C ₁₈ H ₃₃ NO ₄	327.2410
585	6	10-oxo-decanoic acid	10-oxo-decanoic acid	79686 🗗	C ₁₀ H ₁₈ O ₃	186.1256
062	1	10S,17S-DiHDoHE	10S,17S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexa	11667655 🗗	C ₂₂ H ₃₂ O ₄	360.2301
01	27	10Z-heptadecenoic acid	10Z-heptadecenoic acid	5312435 🗗	C ₁₇ H ₃₂ O ₂	268.2402
687	11b	eta,21-Dihydroxy-5beta-pregnane-3,20-dione	+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraeno	16061121 🗗	C ₂₀ H ₃₂ O ₄	336.2301
616			1,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid	5283146 🗗	C ₂₀ H ₃₄ O ₄	338.2457
358			+/-)-11(12)-epoxy-5Z,8Z,14Z,17Z-eicosatetraenoic	16061087 🗗	C ₂₀ H ₃₀ O ₃	318.2195
759		_ 1 ^{OH}	1,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid	5283204 🗗	C ₂₀ H ₃₂ O ₃	320.2351
837			11-amino-undecanoic acid	17083 🗗	C ₁₁ H ₂₃ NO ₂	201.1729
5467		γ γ γ	1b,21-Dihydroxy-5b-pregnane-3,20-dione	44263339 🔂	C ₂₁ H ₃₂ O ₄	348.2301
5347			1beta-hydroxyandrost-4-ene-3,17-dione	94141 🚱	C ₁₉ H ₂₆ O ₃	302.1882
0904			2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-{[(1S,2S,5R,7S	53480452 🗗	C ₂₅ H ₃₈ O ₉	482.2516
5447			1beta-hydroxypregn-4-ene-3,20-dione	101788 🗗	C ₂₁ H ₃₀ O ₃	330.2195
421	_		-oxo-11S,15S-dihydroxy-5Z,13E-prostadienoic acid	5283061 🗗	C ₂₀ H ₃₂ O ₅	352.2250
402	0-	\sim	S,11S,15S-trihydroxy-5Z,13E-prostadienoic acid	5280886 🗗	C ₂₀ H ₃₄ O ₅	354.2406
233			1-Chloro-8E,10E-undecadien-1-ol	44256516 🔂	C ₁₁ H ₁₉ CIO	202.1124

Metabolite Database : Molecule Detail View

All Databa	se Links Calculated Properties Human Pathways								
External database links:									
LIPID MAPS ID:	LMST04010001 &								
CHEBI ID:	16359 &								
HMDB ID:	HMDB0000619 &								
KEGG ID:	C00695 샯								
Chemspider ID:	192176 &								
METLIN ID:	206 샵								
BMRB ID:	bmse000650 룹								
MetaCyc ID:	CHOLATE &								
All Datab	ase Links Calculated Properties Human Pathways								

Human Pathway links:

HMDB and KEGG pathways containing this metabolite

REACTOME pathways containing this metabolite

Metabolite Database : View MoNA MS spectra

CLEAN

•

400

>

Text search on the Metabolomics Workbench Metabolite structure database

- Browse the metabolite database
- Substructure search on metabolite database
- Text search on metabolite database
- Mass (m/z) search on metabolite database

Structure	Studies	Common Name	Systematic Name	PubC pp	anella	Exact mas
92367	-	16,22-epoxy-20beta,23S-dihydroxycholest-1-ene-3-on		-	C27H42O4	430.308
27732	-	22-O-Methyl-Capsicoside D		76316014 🛃	C ₆₃ H ₁₀₆ O ₃₃	1390.661
27730	-	22-O-Methylcapsicoside G		76323354 🗗	C64H108O34	1420.672
40950	-	22-O-Methylparvispinoside A		11521008 🗗	C57H96O29	1244.603
35036	-	22-O-Methylparvispinoside B		11521005 🗗	C57H96O28	1228.608
27376	-	(22R,25R)-Spirosol-5-en-3beta-yl O-alpha-L-rhamnop		76325952 🗗	C47H75NO17	925.503
88545	-	(22S)-24-Methyl-5alpha-furostane-3alpha,20beta,23,	[(1R,2S,4S,6S,7R,8R,9S,12S,13S,16R,18S)-6-(1,3-dih	-	C ₃₀ H ₅₀ O ₆	506.360
22452	-	2-({4,5-dihydroxy-6-[(4-hydroxy-6-{[6-hydroxy-7,9,		46906324 🛃	C ₅₇ H ₉₄ O ₂₆	1194.603
22383	-	2-[(4-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3		441899 🗗	C51H84O22	1048.545
39501	-	(25R)-26-[(beta-D-glucopyranosyl)oxy]-2alpha-hydro		10898575 🛃	C63H104O34	1404.640
39959	-	(25R)-26-[(beta-D-glucopyranosyl)oxy]-2alpha-hydro		21603528 🖨	C62H100O33	1372.614
27378	-	(25R)-26-O-(beta-D-Glucopyranosyl)-furost-5-en-3be		76307877 🛃	C ₅₀ H ₈₂ O ₂₂	1034.529
27377	-	(25R)-26-O-(beta-D-Glucopyranosyl)furost-5-en-3bet		441885 🗗	C51H84O23	1064.540
40857	-	(25S)-3beta,5beta,22R-22-methoxy-urostan-3,26-diol		44584284 🛃	C58H98O29	1258.619
66777	-	26-desglucoprotodioscin	(3beta,22R,25R)-22,26-dihydroxyfurost-5-en-3-yl al	71581120 🖨	C45H74O17	886.492
39374	-	26-O-beta-D-glucopyranosyl-(25R)-5alpha-furost-3be		44566638 🗗	C ₅₆ H ₉₄ O ₂₈	1214.593
35082	-	26-O-[beta-D-glucopyranosyl]-25R-furostan-3beta,22	26-O-[beta-D-glucopyranosyl]-25R-furostan-3beta,22	25041237 🗗	C33H56O9	596.392
40342	-	(2S,3R,4R,5R,6S)-2-[[(2R,3R,4S,5R,6R)-5-hydroxy-6		44566783 🛃	C52H86O23	1078.556
35088	-	3-O-(Rhaa1-2Glcb)-26-O-(Glcb)-(25R)-furosta-5,20(2	3-O-(Rhaa1-2Glcb)-26-O-(Glcb)-(25R)-furosta-5,20(2	52931425 🖨	C45H72O17	884.477
35092	-	3-O-(Rhaa1-4(Rhaa1-2)Glcb)-26-O-(Glcb)-(25R)-furos	3-O-(Rhaa1-4(Rhaa1-2)Glcb)-26-O-(Glcb)-(25R)-furos	52931429 🗗	C ₅₁ H ₈₄ O ₂₂	1048.545
35093	-	3-O-(Rhaa1-4Rhaa1-4(Rhaa1-2)Glcb)-26-O-(Glcb)-22R	3-O-(Rhaa1-4Rhaa1-4(Rhaa1-2)Glcb)-26-O-(Glcb)-22R	52931430 🗗	C58H96O26	1208.619
35084	-	3-O-(Rhaa1-4Rhaa1-4(Rhaa1-2)Glcb)-26-O-(Glcb)-3bet	3-O-(Rhaa1-4Rhaa1-4(Rhaa1-2)Glcb)-26-O-(Glcb)-3bet	52931420 🛃	C57H92O27	1208.582
35085	-	3-O-(Rhaa1-4Rhaa(Rhaa1-2)Glcb)-26-O-(Glcb)-22-meth	3-O-(Rhaa1-4Rhaa(Rhaa1-2)Glcb)-26-O-(Glcb)-22-meth	52931421 🗗	C58H96O26	1208.619
74627	-	(4S,8R,9S,13R)-6-hydroxy-7,9,13-trimethyl-6-(3-met	(4S,8R,9S,13R)-6-hydroxy-7,9,13-trimethyl-6-(3-met	-	C ₂₇ H ₄₂ O ₃	414.313
74628	-	(4S,8R,9S,13R)-6-hydroxy-7,9,13-trimethyl-6-(3-met	(4S,8R,9S,13R)-6-hydroxy-7,9,13-trimethyl-6-(3-met	-	C ₂₇ H ₄₀ O ₃	412.297
55128	-	5alpha-furostan	5alpha-furostan	6857522 🗗	C ₂₇ H ₄₆ O	386.354
53792	-	5beta-furostan	5beta-furostan	6857456 🗗	C ₂₇ H ₄₆ O	386.354
89001	-	Asparasaponin I	(3S,5S,8S,9S,10R,13S,14S)-3-[(2R,3R,4S,5S,6R)-4,5	118701252 🛃	C ₅₁ H ₈₄ O ₂₂	1048.545
158212	-	Asperfloroid		-	C ₂₈ H ₄₀ O ₇	488.277
63148	-	Asperflosterol			C ₂₈ H ₄₂ O ₇	490.293
F	irst	Previous 1 2 3 4 Next Last	Go	Page 1 of 4		

Text Search on M	letabolomics Workbench Metabolite database
Metabolite name:	
Formula:	
Exact mass:	Tolerance (daltons): +/- 0.5 V
PUBCHEM_CID:	
LIPID MAPS ID:	
KEGG ID:	
ChEBI ID:	
HMDB ID:	
InChlKey:	
	Search with entire InChIKey to find exact match Search with 1st 14 characters of InChIKey to ignore stereochemistry and double-bond geometry
Lipid Category: ? 🖗	Sterol Lipids V
Lipid Main class:	Sterols [ST01]
Lipid Sub class:	Furostanols and derivatives [ST0107]
Lipid level 4 class:	
Classyfire class:? 🖗	✓
Classyfire sub class:	
Sort by:	Common Name V
Submit Reset	

Lipid classification example

Text search on the Metabolomics Workbench Metabolite structure database

Text Search on Metabolomics Workbench Metabolite database

• Browse the metabolite database

-											
• Su	bstruct	ture search on metabolite database		Formula:							
• <u>Te</u>	xt searc	ch on metabolite database		Exact mass:				Tole	erance (daltons):	+/- 0.5 🗸	
• Ma	iss (m/z	z) search on metabolite database		PUBCHEM_CID:							
				LIPID MAPS ID:			Ĩ				
				KEGG ID:							
				ChEBI ID:							
				HMDB ID:							
				InChlKev:	[BHOCOFEYR7I CO	0				
					Searc	ch with entire InC	hlKev to find	exact match	1		
					Searc	ch with 1st 14 cha	aracters of In	ChIKey to ig	nore stereochem	istry and doubl	e-bond geometry
				prd Category: ? 🖗		•	 Image: A start of the start of				
Jotoba		arch results for " BHOCOEEVP7		Lipid Main class:	~						
Jalaba	ase se			Lipid Sub class:	~						
Structure	Studies	Common Name	Systematic Name	' Linid lovel 4 class:							
36334	-	3alpha,7alpha,12beta-Trihydroxy-5alpha-cholan-24-o	. 3alpha,7alpha,12beta		\square						
36326	-	3alpha,7alpha,12beta-Trihydroxy-5beta-cholanoic ac	3alpha,7alpha,12beta	Classyfire class:?					~		
36337	-	3alpha,7beta,12alpha-Trihydroxy-5alpha-Cholanoic a	. 3alpha,7beta,12alpha	Classyfire sub class:	v						
36338	-	3alpha,7beta,12beta-Trihydroxy-5alpha-cholan-24-oi	3alpha,7beta,12beta-	Sort by:	Comr	mon Name 🗸					
36330	-	3alpha,7beta,12beta-Trihydroxy-5beta-cholanoic aci	3alpha,7beta,12beta-	Submit Reset							
36335	-	3beta,7alpha,12alpha-Trihydroxy-5alpha-Cholanoic a	. 3beta,7alpha,12alpha								
36336	-	3beta,7alpha,12beta-Trihydroxy-5alpha-cholan-24-oi	3beta,7alpha,12beta-	Trihydroxy-5alpha-cholan-24	-oi	5283876 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
36328	-	3beta,7alpha,12beta-Trihydroxy-5beta-cholan-24-oic	3beta,7alpha,12beta-	Trihydroxy-5beta-cholan-24-	oic	5283871 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
36339	-	3beta,7beta,12alpha-Trihydroxy-5alpha-Cholanoic ac	3beta,7beta,12alpha-	Trihydroxy-5alpha-cholan-24	-oi	5283879 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
36331	-	3beta,7beta,12alpha-Trihydroxy-5beta-cholanoic aci	3beta,7beta,12alpha-	Trihydroxy-5beta-cholan-24-	oic	5283873 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
36340	-	3beta,7beta,12beta-Trihydroxy-5alpha-cholan-24-oic	3beta,7beta,12beta-Tr	rihydroxy-5alpha-cholan-24-	oic	5283880 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
36332	-	3beta,7beta,12beta-Trihydroxy-5beta-cholan-24-oic	3beta,7beta,12beta-T	rihydroxy-5beta-cholan-24-o	ic	1762378 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
36333	2	Allocholic acid	3alpha,7alpha,12alph	a-trihydroxy-5alpha-cholan-2	24	160636 🔂	C ₂₄ H ₄₀ O ₅	408.2876			
36243	156	Cholic acid	3alpha,7alpha,12alph	a-trihydroxy-5beta-cholan-2	1-o	221493 🛃	C ₂₄ H ₄₀ O ₅	408.2876			
36327	-	Isocholic acid	3beta,7alpha,12alpha	-Trihydroxy-5beta-cholan-24	-oi	5283870 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
36329	10	Ursocholic acid	3alpha,7beta,12alpha	-trihydroxy-5beta-cholan-24	-oi	122340 🗗	C ₂₄ H ₄₀ O ₅	408.2876			
									1		

Metabolite name:

InChIKey example:Search on 1st 14 characters of InchIKey for cholic acid returns enantiomers, diastereomers

Text search on the Metabolomics Workbench Metabolite structure database

Substructure search on me	etabolite database				
• Text search on metabolite	database	Me	tabolite name:	cholic	
• Mass (m/z) search on meta	bolite database	Fo	rmula:		
		Ex	act mass:		Tolerance (daltons): +/- 0.5 v
		PU	BCHEM CID		
		LIF	PID MAPS ID:		
tabase search results for " CHOL	IC "	KE	GG ID:		
ucture Studies Common Name	Systematic Name	PubChem (Ch	FRUD		
17 2 12-Ketochenodeoxycholic acid	3alpha,7alpha-dihydroxy-12-oxo-5beta-cholan-24-oic	94235 🚱			
96 3 12-Ketolithocholic acid	3alpha-hydroxy-12-oxo-5beta-cholan-24-oic acid	3080612 🗗 HN	IDB ID:		
- 1beta-Hydroxycholic acid	1beta,3alpha,7alpha,12alpha-tetrahydroxy-5beta-cho	5283893 🗗			
30 - (23S)-methylcholic acid	(23S)-methyl-3alpha,7alpha,12alpha-trihydroxy-5bet	17756586 g InC	ChlKey:		
31 6 3-Dehydrocholic acid	7alpha,12alpha-Dihydroxy-3-oxo-5beta-cholan-24-oic	5283956 		Search with entire InChlKey to fir	nd exact match
74 - 3-Oxocholic acid	3-oxo-7alpha,12alpha-dihydroxy-5beta-cholan-24-oic	44263354 g		Soarch with 1st 14 characters of	In Chilkov to ignoro storoochomistry and double hand geometry
77 - 3-Sulfodeoxycholic acid	3alpha-sulfooxy-12alpha-hydroxy-5beta-cholan-24-oi	44263355 g		Search with 1st 14 characters of	incrincey to ignore stereochemistry and double-bond geometi
92 - 6,7-Diketolithocholic acid	3alpha-hydroxy-6,7-dioxo-5beta-cholan-24-oic acid	137333800 Lin	oid Category: ? 🖗	✓	
13 - 6alpha-Glucuronosylhyodeoxycholic aci	d 3alpha,6alpha-dihydroxy-5beta-cholan-24-oic acid 6	443097 🗗			
25 16 7-Ketodeoxycholic acid	3alpha,12alpha-dihydroxy-7-oxo-5beta-cholan-24-oic	188292 🗗 Lip	oid Main class:	~	
191 5 7-ketolithocholic acid	3alpha-Hydroxy-7-oxo-5beta-cholan-24-oic acid	444262			
12 - 7-Surocholic acid	7 alpha-sulfooxy-salpha, 12 alpha-dinydroxy-sbeta-cho	459070 @ Lip	old Sub class:	✓	
Alanine conjugated chenodeoxycholic a	CID 2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-d 2 [[(4R)-4 [(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-d	145740400			
Allequishelia asid	2-[[(4R)-4-[(3R,55,7R,6R,95,105,125,13R,145,17R)-5	145740353 LIP	old level 4 class:		
79 1 Allochonodooxycholic acid	Salpha, / alpha, toalpha-ti inyuroxy-salpha-cholan-z4	5292927 5	ecufiro olace:2 🕫		
Allocholic acid	3alpha 7alpha-unyuroxy-3alpha-cholan-24-010 800	160636	issynie ciass. ? 🖤		► T
1 Allodeoxycholic acid	3alpha 12alpha-dihydroxy-5alpha-cholan-24	5283833 # Cla	assyfire sub class.		
229 2 Allolithocholic acid	3alpha-hydroxy-5alpha-cholan-24-oic acid	5283803			
4492 - alpha-Hyocholic acid	(4R)-4-[(3R,5R,6R,7S,8S.9S.10R.13R.14S)-3.6.7-trih	131750324 SO	rt by:	Common Name	
08 37 alpha-Muricholic acid	3alpha,6beta,7alpha-trihydroxy-5beta-cholan-24-oic	5283852			
493 - alpha-Muricholic acid 7-sulfate	(4R)-4-[(3R,5R,6S,7S,8S,9S,10R,13R,14S,17R)-3,6-di	155920197 Su	Ibmit Reset		
602 - Asparagine conjugated chenodeoxycho	lic acid 4-amino-2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17	145740366			
Asparagine conjugated cholic acid	4-amino-4-oxo-2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,	145740402 🔂	C ₂₈ H ₄₆ N ₂ O ₇ 522.3305		
- Aspartate conjugated chenodeoxycholic	acid 2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-d	145740501 🗗	C ₂₈ H ₄₅ NO ₇ 507.3196		
48 - Avicholic acid	3alpha,7alpha,16alpha-trihydroxy-5beta-cholan-24-o	5283886 🗗	C ₂₄ H ₄₀ O ₅ 408.2876		
- Avideoxycholic acid	3alpha,16alpha-dihydroxy-5beta-cholan-24-oic acid	52931517 🗗	C ₂₄ H ₄₀ O ₄ 392.2927		
09 35 beta-Muricholic acid	3alpha,6beta,7beta-trihydroxy-5beta-cholan-24-oic	5283853 🗗	C ₂₄ H ₄₀ O ₅ 408.2876		
	24-dinor-3alpha 7alpha 12alpha-trihydroxy-5beta-ch	9547705 🗗	C22H36O5 380.2563		
Bisnorcholic acid	2 Failler ouplia, rapid, i Zapid anyarony obora on				

Metabolite name example

Structure search on Metabolomics Workbench Metabolite structure database

- Browse the metabolite database
- Substructure search on metabolite database
- Text search on metabolite database
- Mass (m/z) search on metabolite database

Structure	PubChem CID	Name		Systematic Name
36894	5284308 🗗	24-Nor-5beta-chol-22-ene-3alpha,6alpha-di	iol	24-Nor-5beta-chol-22-ene-3alpha,6a
36888	5284303 🗗	24-Nor-5beta-cholane-3alpha,6alpha,23-tric	la	24-Nor-5beta-cholane-3alpha,6alpha
36492	5284006 🗗	2chi,3alpha,6alpha,7alpha-Tetrahydroxy-5b	eta-chola	2chi,3alpha,6alpha,7alpha-Tetrahyd
36322	189059 🗗	3alpha,6alpha,12alpha-Trihydroxy-5beta-ch	olan-24-o	3alpha,6alpha,12alpha-Trihydroxy-5
36514	5284027 🗗	3alpha,6alpha,12alpha-Trihydroxy-7-oxo-5t	oeta-chola	3alpha,6alpha,12alpha-Trihydroxy-7
36359	5283897 🗗	3alpha,6alpha,7alpha,12alpha-Tetrahydrox	y-5beta-ch	3alpha,6alpha,7alpha,12alpha-Tetra
36798	3alpha,6alpha,7	beta-Trihydroxy-5alpha-cholan-24-oic Acid	beta-ch	3alpha,6alpha,7alpha,12alpha-Tetra
36750		ЦО	beta-ch	3alpha,6alpha,7alpha,12alpha-Tetra
36314			an-24-o	3alpha,6alpha,7alpha-Trihydroxy-5a
36365		инин Сан	Ipha-ch	3alpha,6alpha,7beta,12alpha-Tetrah
36360			eta-cho	3alpha,6alpha,7beta,12alpha-Tetrah
36315			n-24-oi	3alpha,6alpha,7beta-Trihydroxy-5alp
36655			n-24-oic	3alpha,6alpha-Dihydroxy-12-oxo-5b
362 Show	Structure		c Acid	3alpha,6alpha-Dihydroxy-5alpha-cho
176736			s)-3,6-d	[(3R,6S,10R,13S,17R)-6-acetyloxy-7
198057	HOM			-
36547				5beta-Cholane-3alpha,6alpha,24-trid
36414		ОН		3alpha,6alpha-Dihydroxy-7-oxo-5be
36913	443097 🔂	6alpha-Glucuronosylhyodeoxycholic acid		3alpha,6alpha-dihydroxy-5beta-chol
34701	15542699	6alpha-Hydroxycastasterone		campestan-2alpha 3alpha 6alpha 22

	Search M	etabolomics	Workbench	Metabolite Datab	ase		
		° 🖹 🔚		× • •	3 3 100%	Arom Arom	
	₹						^ H
	mm						C
	\sim						N
	\bigcirc			CH ₃			0
	• +		ſ				
	A		CH₃				5
	A^{-}		\sim	\checkmark			P
							E
		HOIIIII	\checkmark				
	[]		i				CI
e	≻-R1		0	н			Br
ol-22-ene-3alpha,6alpha-dic	_						
plane-3alpha,6alpha,23-triol	C)						
na,7alpha-Tetrahydroxy-5be							✓ Generic
alpha-Trihydroxy-5beta-chd	<						> Groups
alpha-Thinydroxy-7-0x0-5be							
lpha,12alpha-Tetrahydroxy	Name (Cor	nmon, System	atic)		Search type:	Substructure v	
alpha,12alpha-Tetrahydroxy-	Sort by		Common	Name 🗸	Lower limit for	0.95 ×	
Ipha-Trihydroxy-5alpha-chd	Controly			Hume	Tanimoto: Elago for Exact	0.55	
eta,12alpha-Tetrahydroxy-	Records pe	r page:	20 🗸		match:	All(default) v	
eta-Trihvdroxy-5alpha-chol	Submit		Reset				
hydroxy-12-oxo-5beta-chola	n-24-oic	C ₂₄ H ₃₈ O ₅	406.2719	1			
hydroxy-5alpha-cholan-24-oi	c Acid	C ₂₄ H ₄₀ O ₄	392.2927				
,17R)-6-acetyloxy-17-[(2S,38	6)-3,6-d	C ₃₁ H ₅₂ O ₆	520.3764				
		C ₂₉ H ₅₂ O ₄	464.3866				
alpha,6alpha,24-triol		C ₂₄ H ₄₂ O ₃	378.3134				
ihydroxy-7-oxo-5beta-cholan	-24-oic	C24H38O5	406.2719				
hydroxy-5beta-cholan-24-oic	acid 6	C ₃₀ H ₄₈ O ₁₀	568.3247				
na,3alpha,6alpha,22R,23R-pe	entol	C ₂₈ H ₅₀ O ₅	466.3658				
	Page 1 of 6	5					

Mass (m/z) search on Metabolomics Workbench Metabolite structure database

- Browse the metabolite database
- Substructure search on metabolite database
- Text search on metabolite database
- Mass (m/z) search on metabolite database

Choose database to search, m/z tolerance, ion adducts. Enter list of ions or upload a peaklist

					-	
Input Mass	Matched Mass	Delta	Name	Formula	lon	Example
496.4773	496.4724	.0049	Cer(d14:1(4E)/17:0)	C31H62NO3	[M+H]+	Structure
496.4773	496.4724	.0049	Cer(d15:1(4E)/16:0)	C31H62NO3	[M+H]+	Structure
496.4773	496.4724	.0049	Cer(d16:1(4E)/15:0)	C31H62NO3	[M+H]+	Structure
496 4773	496 4724	0049	Cer(d17:1(AE)/14:0)	C31H62NO3	[M+H]+	Structure
406 4772	406 4724	.0040	Con (d10+1 (dE) /12+0)	C21162NO2	(M) III (Chanakuma
490.4773	450.4724	.0049	CET (010:1(4E)/13:0)	031802803	[PITH] T	SCIUCCUIE
496.4773	496.4724	.0049	Cer(d19:1(4E)/12:0)	C31H62NO3	[M+H]+	structure
496.4773	496.4724	.0049	Cer(d20:1(4E)/11:0)	C31H62NO3	[M+H]+	Structure
496.4773	496.4724	.0049	Cer(d21:1(4E)/10:0)	C31H62NO3	[M+H]+	Structure
496.4773	496.4090	.0683	CMNPD22584	C26H52N6O3	[M+H]+	Structure
496.4773	496,4090	0683	CMNPD22586	C26H52N6O3	(M+H)+	Structure
496 4772	106 2006	0777	Onligtot	CODIECTION	[MIN]	Structure
430.4773	490.3990	.0777	OIIIStat	02310541003	[11+11]+	Structure
496.4773	496.3897	.0876	Lycoperine A	C31H50N302	[M+H]+	Structure
496.4773	496.3857	.0916	Rhodopeptin C2	C26H50N504	[M+H]+	structure
496.4773	496.3857	.0916	Rhodopeptin C3	C26H50N504	[M+H]+	Structure
496.4773	496.3761	.1012	1-O-(15'-Methylhexadecyl)-Sn-Glycero-3-Phosphoc	C25H55NO6P	[M+H]+	Structure
496.4773	496.3761	.1012	PC(0-17:0/0:0)	C25H55NO6P	[M+H]+	Structure
496 4773	496 3761	1012	PE (0-20:0/0:0)	C25H55N06P	(M+H)+	Structure
496 4773	496 3745	1028	Yeformoentide B	C27H50N305	[M+H]+	Structure
406 4773	406.3431	1250	Neroumpeperde D	C211146NO4	INC. ILL.	Chanakura
496.4773	490.3421	.1332	Dysoxynainanin A	CSIN46NO4	[PITH] T	structure
496.4775	490.3398	.1375	1-(2-metnoxy-62-octadeceny1)-sn-giycero-5-phosp	C24H5INO/P	[M+H]+	Structure
496.4773	496.3398	.1375	PC(0:0/16:0)	C24H51NO/P	[M+H]+	Structure
496.4773	496.3398	.1375	PC(16:0/0:0)	C24H51N07P	[M+H]+	Structure
496.4773	496.3398	.1375	PC(16:0/0:0)[rac]	C24H51NO7P	[M+H]+	Structure
496.4773	496.3398	.1375	PC(0-14:0/2:0)	C24H51N07P	[M+H]+	Structure
496.4773	496.3398	.1375	PE(19:0/0:0)	C24H51NO7P	[M+H]+	Structure
496.4773	496.3269	.1504	Cordil	C27H46N07	[M+H]+	Structure
496 4773	496 3170	1603	Acidinhilamide C	C29H42N3O4	(M+H)+	Structure
496 4773	496 3130	1643	Suringolin B	C24H42N506	[M+H]+	Structure
406 4773	406.3057	1716	Syringorin B	C201142NOE	INC. ILL.	Chaushung
490.4773	490.3037	.1/10	ZOAR CHARLENE TO (11 - O (4 - O)	C30H42N03	[PTT] T	Structure
496.4775	496.3034	.1759	PC(11:0/4:0)	C23H47NO8P	[M+H]+	Structure
496.4773	496.3034	.1739	PC(13:0/2:0)	C23H4 /NO8P	[M+H]+	Structure
496.4773	496.3034	.1739	PE(14:0/4:0)	C23H47NO8P	[M+H]+	Structure
496.4773	496.3034	.1739	PE(16:0/2:0)	C23H47NO8P	[M+H]+	Structure
496.4773	496.2970	.1803	Mibefradil	C29H39N3O3F	[M+H]+	Structure
496.4773	496.2905	.1868	14-acetvldelcosine	C26H42NO8	[M+H]+	Structure
496.4773	496.2840	.1933	Acidiphilamide E	C25H42N305S	[M+H]+	Structure
496 4773	496 2806	1967	Norfilin I	C29H39N3O5	(M+H)+	Structure
496 4773	496.2000	1067	Tofinostat	C20H30N3O5	[MIN] I	Structure
430.4773	490.2000	.1907	Int Floor	020113011305	[11+11]+	Structure
496.4773	496.2806	.1967	1M-51084	C28H38N3O5	[M+H]+	Structure
496.4773	496.4724	.0049	Cer(t14:0/1/:0)	C31H62NO3	[M+H-H2O]+	structure
496.4773	496.4724	.0049	Cer(t15:0/16:0)	C31H62NO3	[M+H-H2O]+	Structure
496.4773	496.4724	.0049	Cer(t16:0/15:0)	C31H62NO3	[M+H-H2O]+	Structure
496.4773	496.4724	.0049	Cer(t17:0/14:0)	C31H62NO3	[M+H-H2O]+	Structure
496.4773	496.4724	.0049	Cer(t18:0/13:0)	C31H62NO3	[M+H-H2O1+	Structure
496,4773	496,4724	.0049	Cer(+19:0/12:0)	C31H62NO3	[M+H-H201+	Structure
496 4773	496 4724	0049	Cer(±20:0/11:0)	C31H62NO3	[M+H-H201+	Structure
496 4773	496 4724	0049	Cer(t21:0/10:0)	C31H62M03	[M+H-H2O]+	Structure
496 4773	406 4061	.0045	Dondrogonin A	C324E4N30	[M+H-H20]+	Structure
496.4773	490.4201	.0512	21 Carbony benefacences (1/2)	C32H54N30	[H+H-H20]+	Structure
490.4773	490.3996	.0///	21-Carpoxy-neneicosanoyl-carnitine	CZ9H54NO5	[M+H-H2O]+	structure
496.4773	496.3785	.0988	Daphnilongeridine	C32H50NO3	[M+H-H2O]+	structure
496.4773	496.3269	.1504	2-(Acetyiamino)-2-deoxy-3-0-[1-(methoxycarbony1	C27H46N07	[M+H-H2O]+	Structure
496.4773	496.3246	.1527	Maraviroc	C29H40N5F2	[M+H-H2O]+	Structure
496.4773	496.3034	.1739	1-(2-methoxy-13-methyl-pentadecanyl)-sn-glycero	C23H47NO8P	[M+H-H2O]+	Structure
496.4773	496.3034	.1739	1-(2-methoxy-14-methyl-pentadecanyl)-sn-glycero	C23H47NO8P	[M+H-H2O]+	Structure
496,4773	496.3034	.1739	1-(2-methoxy-hexadecanyl)-sn-glycero-3-phosphos	C23H47NO8P	[M+H-H2O]+	Structure
496,4773	496.3017	.1756	Arbumycin	C25H42N307	[M+H-H201+	Structure
496 4773	496 2918	1855	azumami de A	C27H38N504	[M+H-H2O]+	Structure
496.4773	490.2910	.1000	liandon derie erid D	C20053N2020-	[MAN-120] T	Structure
490.4773	490.3994	.0//9	113Souendoric acid B	CJURSDN2O2Na	[ritiNa]+	Structure
496.4773	496.3609	.1164	CMNPD12512	C26H5INO6Na	[M+Na]+	structure
496.4773	496.3431	.1342	N-nervonoyl taurine	C26H51NO4SNa	[M+Na]+	structure
496.4773	496.3397	.1376	(7Z,10Z,13Z,16Z,19Z)-docosapentaenoylcarnitine	C29H47NO4Na	[M+Na]+	Structure
496.4773	496.3397	.1376	Clupanodonyl carnitine	C29H47NO4Na	[M+Na]+	Structure
496.4773	496.3397	.1376	Docosa-4,7,10,13,16-pentaenoyl carnitine	C29H47NO4Na	[M+Na]+	Structure
496.4773	496.3397	.1376	Fiscpropionate D	C29H47NO4Na	(M+Na)+	Structure
496,4773	496.3397	.1376	Fiscpropionate E	C29H47NO4Na	[M+Na]+	Structure
496,4773	496.3305	.1468	Vestaine Bl	C25H49N2O4SNa	[M+Na]+	Structure
100 1000	100.000		vobdalio bi		(in the particular of the part	

Search: (i) a computationally generated database of lipid species, (ii) a reference set of metabolite species (RefMet), or (iii) the Metabolomics Workbench Metabolite database with a list of precursor ions

A computationally generated database composed of major classes of lipid species has been generated from a list of commonly occuring acyl/alkyl chains (listed below) Chain positions and double bond regiochemistry and geometry are not specified. Search the database by entering a list of precursor ion m/z values in the text box, optionally restrict the search to certain lipid classes and then select an appropriate ion type and mass tolerance range.

O Option 1: Search a computationally generated databa	List of precursor ions :	
	496.4773	
O Option 2: Search Retmet, a reference set of metabolin	522.3777	
 Option 3: Search the Metabolomics Workbench Meta (search includes all metabolites) 	524.4802	
		676.6461
Optionally restrict lipid search by class (Option 1 only):	: Sphingoid bases (LCB)	689.6807
: Tri(acyl alkyl)glycerols (TG)	: Ceramides (Cer)	703.6888
: Di(acyl alkyl)glycerols (DG)	: Ceramide phosphates (CerP)	704.6431
: Mono(acyl alkyl)glycerols (MG)	: PI-Ceramides(PI-Cer)	706.6284
: Monogalactosyldiacylgylcerols (MGDG)	: PE-Ceramides(PE-Cer)	717.7772
: Monogalactosyldiacylgylcerols (DGDG)	: Sphingomyelins (SM)	718.5522
: Sulfoquinovosyldiacylglycerols (SQDG)	: Hexosyl ceramides (HexCer)	123.1131
: Phosphtatidylcholines (PC)	: Dihexosyl ceramides (Hex2Cer)	
Phosphtatidic acids (PA)	: Sulfatides (SHexCer)	
: Phosphtatidylserines (PS)	: Mannosyl-PI-Ceramides (MIPC)	
: Phosphtatidylethanolamines (PE)	: Mannosyl-di-PI-ceramides (M(IP)2C)	
Phosphtatidylglycerols (PG)	: Fatty acids/esters (FA)	
: Phosphtatidylinositols (PI)	: Acyl carnitines (CAR)	
: Phosphtatidylinositol phosphates (PIP)	: Sterols,inc. bile acids (ST)	
Cardiolipins (CL)	: Cholesterol esters (CE)	
Mass Tolerance (+/- m/z)	+/- 0.2 m/z v	
Ion adducts (choose at least one with appropriate polari	t u)	
Positive mode:	·y)	
rosiuve mode: ✓ [M+H]+ ✓ [M+H_H2O]+ ✓ [M+Na]+ ✓ [M+NH4]+ ✓ [M+K]-	+ □ [M+2H]2+ □ [M+2Na]2+ □ [M+2Na_H]+	
$[M+H_FtnP] + [M+H_SerP] + [M+H_Hexose] +$		
Negative mode:		
	∐ [M+Na-2H]- ∐ [M+K-2H]-	
ш [м-2нј2- Ш [М-3Нј3- Ш [М-Н-Ser]-		
Neutral:		
Neutral		
Lipid even chains only		
		11
Sort by	Delta v	Or unload a peaklist file
Submit Reset		Browse No file selected
		Bronse No nie selected.
<u>i</u>		L]

Metabolomics Workbench Data Portal: Studies

н	lome	Data Repository	Databases	Protocols	Tools	Training	/ Eve	ents [®]	Ab	out		Search	
Ov	/erview	Upload / Manage Dat	a Browse / Sea	rch Studies An	alyze St	udies Tutoria	als F	AQ					
				D	efault s	orting orde	r is by	y most i	rec	ently	y re	leased st	
owse a	and Sea	rch Studies			Click the Please n download	Study ID to access detailed study informati fer to our Data:FAQ and About:How to C led.	ion; download the n ite pages for inform	wTab (metadata and proce ation regarding how to cite	ssed data) the Metabo	text file; and acc plomics Workben	ess the Stat	istics Toolbox for that study. sets that you have uploaded or	
_						Showing page 1 of 35 Results: 1 2 3 4 5 Next Last Showing results 1 to 50 of 1726				(#: Contains untargeted data) Results per page: 50			
• Browse	,				Study ID 會무	Study Title	Species	Institute 全寻	Analysis ▲	s Released Vers 會류	sion Sample	s Download (* : Contains raw data)	
• S	Summary of a	Il studies			ST002058	Muscle/Lung/Tumor metabolomics	Mus musculus	University of Colorado Anschutz Medical Campus	, LC-MS	2022-02-14 1	32	Uploaded data (267.1M)* (Data format:mzXML)	
 Summary of all projects (groups of studies) 						4T1 and SkM cells	Homo sapiens	University of Colorado Anschutz Medical Campus	LC-MS	2022-02-14 1	12	Uploaded data (65.5M)* (Data format:mzXML)	
 Bubble plots of studies by disease, sample source, species, pathway and metabolite class 						Model of Ovarian High-Grade Serous Carcinoma (LC-MS)	Mus musculus	Georgia Institute of Technology	LC-MS*	2022-02-14 1	356	Uploaded data (143.9G)* (Data format:raw(Thermo))	
 MetStat: View most frequently encountered metabolites in NMDR (mapped to RefMet) Search 						Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondr cardiomyopathy	ial Mus musculus	Weill Cornell Medicine	LC-MS	2022-02-14 1	32	Uploaded data (609M)* (Data format:mzXML)	
0	Experimental	Proiects / Studies			ST002070	Lipidomic Comparison of 2D and 3D Colon Cancer Cell Culture Models	Homo sapiens	The Ohio State University	LC-MS	2022-02-14 1	59	Uploaded data (17.1G)* (Data format:d)	
 MetStat: Perform meta-analysis on named metabolites across all studies: 					ST002071	Metabolic profiling of mouse CD27+ and CD27- gammadelta T cells	Mus musculus	University of Louisville	LC-MS	2022-02-14 1	11	Uploaded data (1.2G)* (Data format:raw(Thermo))	
	Refine by analysis type, species, sample source, disease association, metabolite classification and biochemi					An observational study of cardiovascular patients in India	Homo sapiens	Science And Technology Institute (THSTI)	LC-MS#	2022-02-08 1	286	Uploaded data (10.8G)* (Data format:mzML)	
0	 Select Studies by species, sample source or disease association 					Lipidome Alterations Following Mild Traumat Brain Injury.	ic Rattus norvegicu	s Georgia Institute of Technology	LC-MS	2022-02-07 1	114	Uploaded data (24.7G)* (Data format:mzML)	
õ	 Search data/metadata in experimental projects/studies 					Pollen metabolomics using Arabidopsis thaliana: Comparison of pollen at mature, budration and comparison stores	Arabidopsis thaliana	University of Illinois, Urbana-Champaign	LC-MS*	2022-02-07 1	72	Uploaded data (1.2G)* (Data format:mzML)	
0	Search Unta	ST002061	Glutamine flux in macrophages treated with stable-isotope labeled analog 4 mM (U-13C5 glutamine	5) Mus musculus	Shanghai Jiao Tong University affiliated Renji Hospital	LC-MS	2022-02-07 1	16	Uploaded data (251.3M)* (Data format:mzXML)				
• REST service						Modular evolution of the Drosophila metabolome	Drosophila melanogaster	University of Washington	LC-MS#	2022-02-02 1	261	(Data format:mzXML)	
0	Use the Met	abolomics Workbench REST service t	o retrieve different types of	f data	ST002019	TIPs Metabolomics (blood) Metabolic impact of anticancer drugs	Homo sapiens	Medical Center	MS	2022-02-02 1	70	Not available	
					ST002064	Pd2Spermine and Cisplatin on the polar extracts of brain from healthy mice (part 1)	Mus musculus	University of Aveiro	NMR#	2022-02-02 1	44	Not available	
					ST002065	Metabolic impact of anticancer drugs Pd2Spermine and Cisplatin on the nonpolar extracts of brain from healthy mice (part 2)	Mus musculus	University of Aveiro	NMR*	2022-02-02 1	44	Not available	
					ST002056	Integrated Multilayer Omics Reveals the Genomic, Proteomic and Metabolic Influence of the Histidyl Dipeptides on Heart	es Mus musculus	University of Louisville	GC-MS	2022-01-31 1	8	Not available	
					ST002062	Endophytic bacteria are key players in the modulation of the secondary metabolome of Lithospermum officinale L.	Lithospermum officinale	Aristotle University of Thessaloniki	LC-MS#	2022-01-31 1	45	Uploaded data (1.6G)* (Data format:raw(Thermo))	
					ST001680	Metabolome of NAFLD in high fat diet mouse model	⁹ Mus musculus	Weill Cornell Medicine	LC-MS	2022-01-27 1	96	Uploaded data (40.3G)* (Data format:d)	
					ST001713	Effects of different planting densities on the metabolism of Panax notoginseng	Panax notoginseng	Yunnan Agricultural University	GC-MS*	2022-01-25 1	20	Uploaded data (469.4M)* (Data format:d)	

Distinct Human Hepatocyte Lipidomics Profiles

Induced Steatosis Deet Acute Muse

Distinct Human Hepatocyte Lipidomics Profiles ST002057 for Nonalcoholic Steatohepatitis and In Vitro-Homo sapiens Monash Institute of Pharmaceutical Sciences LC-MS 2022-01-25 1 103

Uploaded data (18.5G)* (Data format:raw(Thermo))
Metabolomics Workbench Data Portal:Projects

Но	me D)ata F	Reposit	ory	Da	tab	ases	Protoco	ols To	ols	Training / Events	About	Search	
Over	rview U	pload	/ Manag	le Dat	a Br	ows	e / Sear	ch Studie:	s Analyze	e Studie	es Tutorials FAQ			
											Studies may (studies with	be grouped i same theme	nto projects e/objective)	
Browse and	d Search	n Stuc	lies						Summary of	f all projec	ts			
Browse									Showing page 3 of 25	Results: Pret	vious 1 2 3 4 5 Next Last Showing results 101	to 150 of 1224 (#: Conta	ins untargeted data) Results per pa	age: 50 v
∘ Sum	mary of all stu	udies							Project ID Project Ti	itle		Institute(Experimental) ✿果	Institute(Analysis) ✿果	Number Of Studies
∘ Sum ∘ Bubb	ble plots of stu	udies by c	disease, samp	le source.	species.	. pathw	av and metal	bolite class	PR001299 Reduced E	ER-mitochondria c	connectivity promotes neuroblastoma multidrug	Columbia University - Medical Center	Columbia University	1
∘ MetS	Stat: View mos	t frequen	tly encountere	ed metabo	lites in N	IMDR (mapped to Re	efMet)	PR001297 In vitro ma their metal	aturation of Toxople bolomic character	lasma gondii bradyzoites in human myotubes and rization	Robert Koch-Institut	Robert Koch-Institut	1
								7	PR001297 In vitro ma their metal	aturation of Toxopla bolomic character	lasma gondii bradyzoites in human myotubes and rization	Robert Koch-Institut	Robert Koch-Institute	1
Summary of all studie	es in project PRU	001288		Analysis	Palaasa		Doumland	n l	PR001294 Lyso-lipid i function	induced oligodend	drocytes maturation underlie restoration of optic nerve	University of Miami	University of Miami	1
Study ID Study Title		Species	Institute	(* : Contains Untargted data)	Date Vers	sion Sample	s (* : Contains raw data)		PR001292 massNet: i spectrome	integrated process etry data using dee	sing and classification of spatially resolved mass ep learning for rapid tumor delineation	Brigham and Women's Hospital	Brigham and Women's Hospital	1
ST002031 sulfur metabolism in red b (Whole blood)	blood cells and multiple orga	ans Mus musculus	Anschutz Medical Campus	MS	2022-01-21 1	58	Uploaded data (4.1G)*	te classification	PR001291 An observe	ational study of ca	ardiovascular patients in India	Translational Health Science And Technology Institute (THSTI)	Translational Health Science And Technology Institute (THSTI)	1
Irradiation causes alterati ST002032 sulfur metabolism in red b (Blood plasma)	tions of polyamine, purine an blood cells and multiple orga	nd Mus ans musculus	University of Colorado Anschutz Medical Campus	MS	2022-01-21 1	58	Uploaded data (4.2G)*		PR001290 Maternal H	Hypoxemia and Ox	xidative Stress	LOMA LINDA UNIVERSITY	Loma Linda University School of Medicine	1
Irradiation causes alterati ST002033 suffur metabolism in red b	tions of polyamine, purine an blood cells and multiple orga	nd Mus ans musculus	University of Colorado Anschutz Medical	мѕ	2022-01-21 1	57	Uploaded data (4.4G)*		PR001288 Irradiation blood cells	causes alterations s and multiple orga	is of polyamine, purine and sulfur metabolism in red ans	University of Colorado Anschutz Medical Campus	University of Colorado Anschutz Medical Campus	11
(Prestool) Irradiation causes alterati ST002034 sulfur metabolism in red b	tions of polyamine, purine an blood cells and multiple orga	nd Mus	Campus University of Colorado Anschutz Medical	MS	2022-01-21 1	58	Uploaded data (4.6G)*		PR001284 A Sentinel	I Serum Quality M	anagement Program for NMR Metabolomics	University of Michigan	University of Michigan	1
(Poststool) Irradiation causes alterati ST002035 sulfur metabolism in red t	tions of polyamine, purine an blood cells and multiple orga	nd ans musculus	Campus University of Colorado Anschutz Medical	MS	2022-01-21 1	58	Uploaded data (3.9G)*	ata						
(Heart) Irradiation causes alterati ST002036 sulfur metabolism in red t	tions of polyamine, purine an blood cells and multiple orga	nd ans musculus	Campus University of Colorado Anschutz Medical	MS	2022-01-21 1	58	Uploaded data (4G)*							
(Kidney) Irradiation causes alterati ST002037 sulfur metabolism in red t	tions of polyamine, purine an blood cells and multiple orga	nd ans musculus	Campus University of Colorado Anschutz Medical	MS	2022-01-21 1	58	Uploaded data (4.9G)*							
(Liver) Irradiation causes alterati ST002038 sulfur metabolism in red to (Durdenum)	tions of polyamine, purine an blood cells and multiple orga	nd Mus ans musculus	Campus University of Colorado Anschutz Medical	MS	2022-01-21 1	58	Uploaded data (4.9G)*							
Irradiation causes alterati ST002039 sulfur metabolism in red t (Brain)	tions of polyamine, purine an blood cells and multiple orga	nd Mus ans musculus	University of Colorado Anschutz Medical Campus	MS	2022-01-21 1	58	Uploaded data (3.9G)*							
Irradiation causes alterati ST002040 sulfur metabolism in red t (Colon)	tions of polyamine, purine an blood cells and multiple orga	nd Mus ans musculus	University of Colorado Anschutz Medical Campus	мs	2022-01-21 1	57	Uploaded data (3.9G)*							
Irradiation causes alterati ST002041 sulfur metabolism in red t (Spleen)	tions of polyamine, purine an blood cells and multiple orga	nd Mus ans musculus	University of Colorado Anschutz Medical Campus	MS	2022-01-21 1	58	Uploaded data (3.9G)*							

NMDR:Study-level view contains multiple metadata sections

Summary	v of study ST001140							
This data is av https://www.me This work is su	This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000761. The data can be accessed directly via it's Project DOI: 10.21228/M89Q32 & This work is supported by NIH grant, U2C- DK119886. See: https://www.metabolomicsworkbench.org/about/howtocite.php &							
Perform stat	stical analysis Show all samples Show named metabolites Download named metabolite data mwTab file (text) Download mwTab file(JSON) Download data (Contains raw data)							
Study ID	ST001140							
Study Title	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure							
Study Summary	Glucocorticoids (GCs) are widely used in veterinary and human medicine. Chromic endogenous or iatrogenic GC overexposure impairs metabolic function and can result in diverse side-effects, including Cushing's syndrome. This study examines the effects of experimentally induced short-term and long-term GC excess (induced by prednisolone and tetracosactide, respectively) on the plasma lipidome of Beale dogs. Both, long- and short-term GC resulted in significant changes of the plasma lipidome.							
Institute	National University of Singapore;University of Zurich							
Department	Singapore Lipidomics Incubator (SLING); Vetsuisse Faculty, University of Zurich							
Laboratory	Singapore Lipidomics Incubator (SLING), National University of Singapore							

Select appropriate tab below to view additional metadata details:

Analysis ID	AN001870	AN001871	AN001872	AN001873
Analysis type	MS	MS	MS	MS
Chromatography type	Reversed phase	Reversed phase	HILIC	Normal phase
Chromatography system	Agilent 1290 Infinity	Agilent 1290 Infinity	Agilent 1290 Infinity	Agilent 1100
Column	Agilent Zorbax RRHD Eclipse Plus C18 (50 x 2.1 mm, 1.8 μm, 95 Å)	Agilent Zorbax RRHD Eclipse Plus C18 (50 x 2.1 mm, 1.8 μm, 95 Å)	Waters Acquity BEH HILIC (100 x 2.1mm,1.7 µm, 130 Å)	Agilent Zorbax Eclipse XDB-C18 Silica (150 x 3mm, 1.8 µm, 80 Å)
MS Type	ESI	ESI	ESI	ESI
MS instrument type	Triple quadrupole	Triple quadrupole	Triple quadrupole	Triple quadrupole
MS instrument name	Agilent 6460 QQQ	Agilent 6495 QQQ	Agilent 6490 QQQ	ABI Sciex 4000 QTrap
lon Mode	POSITIVE	POSITIVE	POSITIVE	POSITIVE
Units	µmol/L	umol/L	umol/L	umol/L

Example: Analysis section

Study-level view : Show named metabolites and measurements

Select

NMDR:Study-level view/download options

Samples/study design

Named metabolites

Download dataset

Download mwTab (text)

Download mwTab (json)

NMDR: raw data view/download

Collaboration with Global Natural Product Social Molecular Networking (GNPS)

View spectral details of MS raw data files deposited in NMDR via the GNPS dashboard

GNPS Dashboard: Collaborative Analysis of Mass Spectrometry Data in the Web Browser D. Petras et al, Nature Methods (2021) https://doi.org/10.1038/s41592-021-01339-5

Metabolomics Workbench Quick search

What is searched?

- Metabolite name
- Metabolite InChIKey
- PubChem Compound ID
- Molecular formula
- Metabolite mass (+/- 0.5 daltons)
- Metabolite class
- Study title
- NMDR Study ID
- NMDR Project ID
- NMDR studies containing that metabolite

Regular expression search

What is searched?

• Metabolite common names and systematic names in MW metabolite database

Structure	Studies	Common Name	Systematic Name	PubChem CID	Formula	gre
1479	1	2-oxo-4-hydroxy-hexanoic acid	2-oxo-4-hydroxy-hexanoic acid	441164 🔂	C ₆ H ₁₀ C	
1525	3	2-oxo capric acid	2-oxo-decanoic acid	259794 🛃	C ₁₀ H ₁₈ C	gre
1526	46	3-methyl pyruvic acid	2-oxo-butanoic acid	58 GP	C ₄ H ₆ C	aro
1528	-	2-keto valeric acid	2-oxo-pentanoic acid	74563 🗗	C ₅ H ₈ C	gre
1531	6	2-keto-n-caproic acid	2-oxo-hexanoic acid	159664 🔂	C6H10C	gre
1535	-	2-Keto-n-heptylic acid	2-oxo-heptanoic acid	5282977 🗗	C7H12	
1540	-	2-keto-n-caprylic acid	2-oxo-octanoic acid	67600 🗗	C ₈ H ₁₄ C	gre
546	-	n-heptanoyl acetic acid	2-oxo-nonanoic acid	259793 🔂	C ₉ H ₁₆ C	
564	-	2-keto tridecanoic acid	2-oxo-tridecanoic acid	5282989 🗗	C13H24	
573	-	2-keto palmitic acid	2-oxo-hexadecanoic acid	5282996 🗗	C ₁₆ H ₃₀ O ₃	
584	254	Pyruvic acid	2-oxo-propionic acid	1060 🗗	C ₃ H ₄ O ₃	
594	-	2-oxo-undecanoic acid	2-oxo-undecanoic acid	5312886 🗗	C ₁₁ H ₂₀ O ₃	
597	-	2-oxo-dodecanoic acid	2-oxo-dodecanoic acid	5312887 🗗	C ₁₂ H ₂₂ O ₃	
605	-	2-oxo-tetradecanoic acid	2-oxo-tetradecanoic acid	5312894 🗗	C ₁₄ H ₂₆ O ₃	
609	-	2-oxo-pentadecanoic acid	2-oxo-pentadecanoic acid	5312896 🗗	C ₁₅ H ₂₈ O ₃	
614	-	2-oxo-heptadecanoic acid	2-oxo-heptadecanoic acid	5312901 🗗	C ₁₇ H ₃₂ O ₃	
1619	-	2-oxo-nonadecanoic acid	2-oxo-nonadecanoic acid	5312918 🗗	C ₁₉ H ₃₆ O ₃	
622	-	2-oxo-eicosanoic acid	2-oxo-eicosanoic acid	5312921 🗗	C ₂₀ H ₃₈ O ₃	
624	-	2-oxo-heneicosanoic acid	2-oxo-heneicosanoic acid	5312923 🗗	C ₂₁ H ₄₀ O ₃	
629	-	2-oxo-docosanoic acid	2-oxo-docosanoic acid	5312928 🗗	C ₂₂ H ₄₂ O ₃	
633	-	2-oxo-tricosanoic acid	2-oxo-tricosanoic acid	5312932 🗗	C ₂₃ H ₄₄ O ₃	
1651	1	5-Amino-2-oxopentanoic acid	2-oxo-5-amino-pentanoic acid	439402 🗗	C ₅ H ₉ NO ₃	
652	15	2-Oxo-4-methylthiobutanoic acid	2-oxo-4-methylthio-butanoic acid	473 🗗	C ₅ H ₈ O ₃ S	
656	4	2-Oxo-4E-hexenoic acid	2-Oxo-4E-hexenoic acid	5280996 🗗	C ₆ H ₈ O ₃	
1673	-	Dihydroxy-fumaric acid	2-oxo-3,4,4-trihydroxy-3E-butenoic acid	54678503 🗗	C ₄ H ₄ O ₆	
2032	67	Oxaloacetic acid	2-oxo-butanedioic acid	970 🗗	$C_4H_4O_5$	
033	43	Oxoadipic acid	2-oxo-hexanedioic acid	71 🗗	C ₆ H ₈ O ₅	
298	7	2-oxo-octadecanoic acid	2-oxo-octadecanoic acid	439332 🗗	C ₁₈ H ₃₄ O ₃	
37082	38	Glyoxylic acid	2-oxoacetic acid	760 🗗	C2H2O3	
37133	69	Phenylpyruvic acid	2-oxo-3-phenylpropanoic acid	997 🔂	C ₉ H ₈ O ₃	

MW Usability: Bubble chart access to key NMDR study search parameters (Species, disease, sample source, metabolic pathways, metabolite classes)

Species

Sample source

Metabolite class

MW Usability: Bubble chart access to key NMDR study search parameters (Species, disease, sample source, metabolic pathways, metabolite classes)

Select Sample source link

Text search on NMDR studies/projects

• Brow	se
c	Summary of all studies
c	 Summary of all projects (groups of studies)
c	Bubble plots of studies by disease, sample source, species, pathway and metabolite class
c	MetStat: View most frequently encountered metabolites in NMDR (mapped to RefMet)
• Searc	sh
c	Experimental Projects / Studies
c	MetStat: Perform meta-analysis on named metabolites across all studies:
	Refine by analysis type, species, sample source, disease association, metabolite classification and biochemical path
c	Select Studies by species, sample source or disease association
c	Search data/metadata in experimental projects/studies
c	Search Untargeted MS data by m/z, retention time, instrumentation
c	REST service
c	 Use the Metabolomics Workbench REST service to retrieve different types of data

Showing re	sults 1 to 4 of 4	(#: Contains untargeted data) Results per page: 50 V						
Study ID	Study Title ✿果	Species	Institute ✿果	Analysis 1 ₽	Released ≜ ↓	Version	Samples	Download (* : Contains raw data)
ST001845	Identification of unique metabolite networks between Latino and Caucasian patients with nonalcoholic fatty liver disease (NAFLD) (part V)	Homo sapiens	University of California, Davis	MS	2021-07-05	1	21	Uploaded data (7.1M)* (Data format:wiff)
ST001844	Identification of unique metabolite networks between Latino and Caucasian patients with nonalcoholic fatty liver disease (NAFLD) (part III)	Homo sapiens	University of California, Davis	MS	2021-07-05	1	61	Uploaded data (9.4M)* (Data format:wiff)
ST001843	Identification of unique metabolite networks between Latino and Caucasian patients with nonalcoholic fatty liver disease (NAFLD) (part II)	Homo sapiens	University of California, Davis	MS	2021-07-05	1	60	Uploaded data (17.1G)* (Data format:d)
ST001842	Identification of unique metabolite networks between Latino and Caucasian patients with nonalcoholic fatty liver disease (NAFLD) (part I)	Homo sapiens	University of California, Davis	MS	2021-07-05	1	60	Uploaded data (614.4M (Data format:cdf)

Text search on NMDR metadata (all sections)

	Browse
	 Summary of all studies
	 Summary of all projects (groups of studies)
	 Bubble plots of studies by disease, sample source, species, pathway and metabolite class
	 MetStat: View most frequently encountered metabolites in NMDR (mapped to RefMet)
•	Search
	○ Experimental Projects / Studies
	 MetStat: Perform meta-analysis on named metabolites across all studies:
	Refine by analysis type, species, sample source, disease association, metabolite classification and biochemical pathway
	 Select Studies by species, sample source or disease association
	 Search data/metadata in experimental projects/studies
	 Search Untargeted MS data by m/z, retention time, instrumentation
	○ REST service
	 Use the Matchelomics Workbanch REST service to ratriave different types of data

ST000917	ST:STUDY_TITLE	Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. Part
ST000977	CO:COLLECTION_SUMMARY	2 weeks prior to operation day (bariatric surgery) for the NAFLD group and among
ST000977	PR:PROJECT_SUMMARY	of metabolic syndrome. NAFLD is a very heterogeneous disease, as it presents in
ST000977	PR:PROJECT_TITLE	patients with nonalcoholic fatty liver disease (NAFLD)
ST000977	ST:STUDY_SUMMARY	Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathology
ST000977	ST:STUDY_TITLE	patients with nonalcoholic fatty liver disease (NAFLD)
ST000977	TR:TREATMENT_SUMMARY	fatty liver disease (NAFLD)
ST001680	PR:PROJECT_SUMMARY	metabolites changed in high fat fed NAFLD mouse model. We suggest that AC26106
ST001680	PR:PROJECT_TITLE	Metabolome of NAFLD in high fat diet mouse model
ST001680	ST:STUDY_SUMMARY	metabolites changed in high fat fed NAFLD mouse model. We suggest that AC26106
ST001680	ST:STUDY_TITLE	Metabolome of NAFLD in high fat diet mouse model
ST001710	PR:PROJECT_SUMMARY	Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a progressive
ST001710	ST:STUDY_TITLE	Metabolic signatures of NAFLD - Lipidomics data (part 1 of 3)
ST001711	PR:PROJECT_SUMMARY	Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a progressive
ST001711	ST:STUDY_TITLE	Metabolic signatures of NAFLD - Polar metabolomics data (part II)
ST001842	CO:COLLECTION_SUMMARY	2 weeks prior to operation day (bariatric surgery) for the NAFLD group and among
ST001842	PR:PROJECT_SUMMARY	Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathology
ST001842	PR:PROJECT_TITLE	patients with nonalcoholic fatty liver disease (NAFLD)
ST001842	ST:STUDY_SUMMARY	of metabolic syndrome. NAFLD is a very heterogeneous disease, as it presents in
ST001842	ST:STUDY_TITLE	patients with nonalcoholic fatty liver disease (NAFLD) (part II)
ST001842	TR:TREATMENT_SUMMARY	fatty liver disease (NAFLD)
ST001843	CO:COLLECTION_SUMMARY	2 weeks prior to operation day (bariatric surgery) for the NAFLD group and among
ST001843	PR:PROJECT_SUMMARY	Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathology

Search untargeted MS data IN NMDR (m/z, retention time "features")

Browse and Search Studies

Browse

- Summary of all studies
- Summary of all projects (groups of studies)
- $\circ\,$ Bubble plots of studies by disease, sample source, species, pathway and metabolite class
- MetStat: View most frequently encountered metabolites in NMDR (mapped to RefMet)

Search

- Experimental Projects / Studies
- MetStat: Perform meta-analysis on named metabolites across all studies:
 Refine by analysis type, species, sample source, disease association, metabolite classification
- Select Studies by species, sample source or disease association
- Search data/metadata in experimental projects/studies
- Search Untargeted MS data by m/z, retention time, instrumentation
- REST service
- Use the Metabolomics Workbench REST service to retrieve different types of data

	Metadata details for analysis AN001609
Study ID	ST000983
Analysis ID	AN001609
Study Title	Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms (Part I)
Institute	University of California, Davis
Species	Homo sapiens
lon_mode	POSITIVE
MS type	ESI
MS Instrument Name	Agilent 6530 QTOF
MS Instrument Type	QTOF
Chromatography Instrument Name	Agilent 6530
Chromatography Type	Reversed phase
Chromatography Column	Waters Acquity CSH C18 (100 x 2.1mm, 1.7um)
Solvent A	60:40 Acetonitrile:Water +10mM Ammonium Formate +10mM Formic Acid
Solvent B	9:1 Isopropanol:Acetonitrile +10mM Ammonium Formate +10mM Formic Acid

m/z:	657.48			
Tolerance (m/z):	0.01 ~			
Retention time:				
Folerance(min or sec):	0.2 ~			
on mode:	Positive V			
Chromatography type:	· ·			
MS instrument name:			~]
IS instrument type:	~)			
imit search to studies	by disease association	, sample so	urce and/o	or spec
Disease:			•	
Sample source:			~	
Species:		~		
Sort by:	mz 🗸			

Features that have been identified will appear in the "Name" column in the results table. Optionally specify a retention time value and tolerance window to restrict the search. Leave both m/z and retention time fields blank to search for studies using a selected MS/chromatography parameter.

Details	Name	m/z	RT	RT_Units	Study	lon_mode	MS_Instrument	MS_Inst_Type	Chromatography
AN001527		657.4762	1.03	Minutes	ST000932	POSITIVE	Agilent 6220 TOF	TOF	Normal phase
AN001064		657.4765	23.5	Minutes	ST000689	POSITIVE	Agilent 6530 QTOF	QTOF	Reversed phase
AN001532		657.4779	1.02	Minutes	ST000935	POSITIVE	Agilent 6220 TOF	TOF	Normal phase
AN002964		657.4785	22.27	Minutes	ST001828	POSITIVE	Agilent 6445 Q-TOF	QTOF	Reversed phase
AN000806		657.4801	16.34	Minutes	ST000528	POSITIVE	Thermo Orbitrap	Orbitrap	Reversed phase
AN003044		657.48059	2.92	Minutes	ST001882	POSITIVE	Thermo Q Exactive HF hybrid Orbitrap	Orbitrap	Reversed phase
AN000806		657.4806	21.25	Minutes	ST000528	POSITIVE	Thermo Orbitrap	Orbitrap	Reversed phase
AN003049		657.48176	2.16	Minutes	ST001885	POSITIVE	Thermo Orbitrap ID-X tribrid	Orbitrap/ion trap	Reversed phase
AN003049		657.48183	2.48	Minutes	ST001885	POSITIVE	Thermo Orbitrap ID-X tribrid	Orbitrap/ion trap	Reversed phase
AN000627		657.4820	4.4	Minutes	ST000391	POSITIVE	Agilent 6530A QTOF	QTOF	HILIC
AN000741		657.4824	16.31	Minutes	ST000476	POSITIVE	Orbitrap	Orbitrap	Reversed phase
AN000808		657.4836	16.2	Minutes	ST000530	POSITIVE	Thermo Orbitrap	Orbitrap	Reversed phase
AN001776		657.4841	51.5	Seconds	ST001091	POSITIVE	Thermo Fusion Tribrid Orbitrap	Orbitrap/ion trap	HILIC
AN000953		657.4848	46.54	Minutes	ST000621	POSITIVE	Waters Synapt G2 S QTOF	QTOF	Reversed phase
AN000627		657.4850	2.4	Minutes	ST000391	POSITIVE	Agilent 6530A QTOF	QTOF	HILIC
AN001516		657.4850	9.08	Minutes	ST000923	POSITIVE	Thermo Q Exactive Plus Orbitrap	Orbitrap	Reversed phase
AN001436		657.4853	8.87	Minutes	ST000880	POSITIVE	Thermo Q Exactive Plus Orbitrap	Orbitrap	Reversed phase
AN000347		657.4853	20.14	Minutes	ST000232	POSITIVE	Thermo Q Exactive Orbitrap	Orbitrap	Reversed phase
AN001609	DG (36:3) [M+K]+	657.4854	6.59	Minutes	ST000983	POSITIVE	Agilent 6530 QTOF	QTOF	Reversed phase
AN001610	DG (36:3) [M+K]+	657.4854	6.59	Minutes	ST000984	POSITIVE	Agilent 6530 QTOF	QTOF	Reversed phase
AN001611	DG (36:3) [M+K]+	657.4854	6.59	Minutes	ST000985	POSITIVE	Agilent 6550 QTOF	QTOF	Reversed phase
AN001612	DG (36:3) [M+K]+	657.4854	6.59	Minutes	ST000986	POSITIVE	Agilent 6560 Ion Mobility	QTOF	Reversed phase
AN001613	DG (36:3)	657.4854	6.59	Minutes	ST000987	POSITIVE	Leco Citius LC-HRT	QTOF	Reversed phase

MW REST service access on the Metabolomics Workbench

Home Data Repository Databases Protocols Tools Training / Events About Search

Overview Load and Analyze Your Own Dataset Analyze NIH Data Repository Studies MS Searches REST Service External Tools (Links)

Metabolomics WorkBench REST service

MW REST API (v1.0, 5/7/2019) Download API (pdf)

*Note: A number of new REST queries have been added that are not described in this API version (see new examples below)

The Metabolomics WorkBench REST service enables access to a variety of data (including metabolite structures, study metadata and experimental results) using HTTP requests. These requests may be carried out using a web browser or may be embedded in 3rd party applications or scripts to enable programmatic access. Most modern programming languages including PHP, Perl, Python, Java and Javascript have the capability to create HTTP request and interact with datasets such as this REST service.

The REST URL consists of three main parts, separated by forward slashes, after the common prefix specifying the invariant base URL: (https://www.metabolomicsworkbench.org/rest/)

- a. The context specification dictates which type of resource to access and is chosen from one of the following: <study | compound | refmet | gene | protein | moverz | exactmass>
- b. The input specification is composed of 2 required parameters separated by forward slashes. The first parameter is the *input item* which depends on the context. The 2nd parameter is an appropriate *input value* for the chosen item. Examples of an input specification are:
- /compound/pubchem_cid/311/
- /compound/formula/C20H34O/
- /study/study_id/ST000001/
- /study/study_title/diabetes/
- /refmet/name/Cholesterol/
- /refmet/match/LysoPC16:0/ /gene/gene_symbol/acaca/
- /protein/uniprot_id/Q13085/

Exceptions to this input specification occur when the 'moverz' context (MS search) is selected. In this case the input value must consist of 3 parts separated by forward slashes: <m/z value>/<adduct>/<tolerance(Daltons)>, e.g. '635.52/M+H/0.2'. In the case of the 'exactmass' context the input value must consist of 2 parts separated by forward slashes: dipid bulk abbreviation>/<adduct>, e.g. 'PC(34:1)/M+H' and the input and output items are ignored.

c. The **output** specification is composed of a required *output item* parameter and an optional *output format* parameter. The list of possible output items depends on the value chosen for the context. In the case of the "compound" context one or more (separated by commas) of 'regno', 'formula','exactmass', 'inchi_key', 'name', 'sys_name', 'smiles', 'lm_id', 'pubchem_cid', 'hmdb_id', 'kegg_id', 'chebi_id', 'metacyc_id' may be specified. More conveniently, an output type of 'all' may be specified to retrieve all compound-related fields. Also an output type of 'classification' retrieves the LIPID MAPS/ClassyFire classification hierarchy. In the case of the "study" context, allowed output types are 'summary', 'factors', 'analysis', 'metabolites' and 'data'. The default output format is JSON which is amenable to manipulation and parsing by various programming languages. Optionally a text ouput format may be specified, for example:

/compound/pubchem_cid/311/all/txt

Exceptions to this output specification occur when either 'molfile' (molfile is downloaded) or 'png' (png image is displayed in browser) is chosen as an output item in the "compound" context.

The interactive "REST url" creator below shows most of the currently available options for this service.

Base URL	/Context	/Input item	/Input value	/Output item	/Output format						
https://www.metabolomicsworkbench.org/rest	/ ~	/ •		/ ~	/ text v						
Create REST URL Reset (What is REST?) (What	reate REST URL Reset (What is REST?) (What is JSON?)										

MW REST service API document

https://www.metabolomicsworkbench.org/tools/MWRestAPIv1.0.pdf

Metabolomics Workbench REST URL-based API Specification

Version: 1.0 Date: 5/7/2019

This document describes the Metabolomics Workbench REST API specifications, a web interface for accessing a variety of data such as metabolite structures, study metadata, experimental results etc. It details the syntax of the HTTP requests including both the names of the available requests and parameters. These HTTP requests may be carried out using a web browser or may be embedded in 3rd party applications or scripts to enable programmatic access. Most modern programming languages including PHP, Perl, Python, Java and Javascript have the capability to create HTTP requests and interact with datasets through the REST API.

The URL Path

The REST URL consists of three main parts, separated by forward slashes, after the common prefix specifying the invariant base URL (https://www.metabolomicsworkbench.org/rest/):

https://www.metabolomicsworkbench.org/rest/<context>/<input specification>/<output specification>

Part 1: The **context** determines the type of data to be accessed from the Metabolomics Workbench, such as metadata or results related to the submitted studies, data from metabolites, genes/proteins and analytical chemistry databases as well as other services related to mass spectrometry and metabolite identification:

<context> = study | compound | refmet | gene | protein | moverz | exactmass

Part 2: The input specification consists of two required parameters describing the REST request:

<input specification> = <input item>/<input value>

Part 3: The **output specification** consists of two parameters describing the output generated by the REST request:

<output specification> = <output item>/[<output format>]

The first parameter is required in most cases. The second parameter is optional. The input and output

MW REST service overview

The MW REST service has 5 main contexts:

1. Compound(metabolite) context (compound input) Retrieve data on name, formula, mass, InChIKey, SMILES, molfile, classification, Pubchem ID etc.

from the Metabolite structure database.

2. NMDR Study context (study input)

Retrieve data on study summaries, study design, study metadata, experimental conditions, metabolite numbers, sample source, species, disease association, tables of measurements, etc from NMDR studies.

3. RefMet context (refmet input)

Access RefMet standardized nomenclature and annotations, map metabolite names to RefMet names, download all RefMet names, chemical classification, etc.

4. Gene/Protein context (gene or protein input)

Access DNA/RNA/protein identifiers, gene symbols, protein sequences, splice variants, homologs, etc, from the MW human Gene/Protein database of metabolism-related genes.

5. Mass spectrometry context (moverz or exactmass input)

Perform precursor ion searches on RefMet database, Metabolite structure database and Lipid database by specifying m/z, adduct and mass tolerance. Calculate exact mass of a lipid molecular species ion.

MW REST service Query Builder

The online REST query builder has a menu-based format which covers most of the REST queries in the API

JSON or plain text

The interactive "REST url" creator below	w shows most of the cu	rrently available options fo	or this service.		
Base URL	/Context	/Input item	/Input value	/Output item	/Output format
https://www.metabolomicsworkbench.org/rest	/ compound v	/ formula 🗸	/ C12H24O2	/ name 🗸	/ text 🗸
Create REST URL Reset (What is REST	?) (What is JSON?)		/ CI2H24O2	/ Indine	

MW REST web page contains numerous examples for each context

Metabolomics WorkBench REST service

The Metabolomics WorkBench REST service enables access to a variety of data (including metabolite structures, study metadata and experimental results) using HTTP requests. These requests may be carried out using a web browser or may be embedded in 3rd party applications or scripts to enable programmatic access. Most modern programming languages including PHP, Perl, Python, Java and Javascript have the capability to create HTTP request and interact with datasets such as this REST service.

Metabolite (structure) context

Study-specific (Metadata, data) context

Example request	Example URL
Compound c	ontext
Fetch compound common name from Metabolomics Workbench database regno	https://www.metabolomicsworkbench.org/rest/compound/regno/11/name
Fetch all compound fields from Metabolomics Workbench database regno	https://www.metabolomicsworkbench.org/rest/compound/regno/11/all
Fetch all compound fields as text from Metabolomics Workbench database regno	https://www.metabolomicsworkbench.org/rest/compound/regno/11/all/txt
Fetch compound smiles from PubChem compound ID	https://www.metabolomicsworkbench.org/rest/compound/pubchem_cid/439577 /smiles
Fetch compound common name and sytematic name from InChlKey	https://www.metabolomicsworkbench.org/rest/compound/inchi_key /JTWQQJDENGGSBJ-UHFFFAOYSA-N/name,sys_name
Fetch all compound fields from formula (multiple records)	https://www.metabolomicsworkbench.org/rest/compound/formula/C20H34O/all
Fetch compound classification hierarchy from PubChem compound ID	https://www.metabolomicsworkbench.org/rest/compound/pubchem_cid/528136 /classification
Download compound molfile from Metabolomics Workbench database regno	https://www.metabolomicsworkbench.org/rest/compound/regno/28606/molfile
Fetch png image of structure from Metabolomics Workbench database regno	https://www.metabolomicsworkbench.org/rest/compound/regno/11/png
Study con	text
Show all publicly available studies (Project, Study, Analysis ID)	https://www.metabolomicsworkbench.org/rest/study/study_id/ST/available
Fetch summary information for a study	https://www.metabolomicsworkbench.org/rest/study/study_id/ST000001 /summary
Fetch samples and experimental variables (factors) for a study	https://www.metabolomicsworkbench.org/rest/study/study_id/ST000001/factors
Fetch summary information for all studies	https://www.metabolomicsworkbench.org/rest/study/study_id/ST/summary
Fetch analysis information for a study	https://www.metabolomicsworkbench.org/rest/study/study_id/ST000001/analysi
Fetch metabolites and annotations detected in a study (one study at a time)	https://www.metabolomicsworkbench.org/rest/study/study_id/ST000009 /metabolites
Fetch named metabolite measurements for a study (one study at a time)	https://www.metabolomicsworkbench.org/rest/study/study_id/ST000001/data
Fetch mwTab content for an analysis within a study in mwTab format	https://www.metabolomicsworkbench.org/rest/study/analysis_id/AN000001 /mwtab/txt
Fetch mwTab content for an analysis within a study in json format	https://www.metabolomicsworkbench.org/rest/study/analysis_id/AN000001 /mwtab
Fetch species information (as text) for all studies	https://www.metabolomicsworkbench.org/rest/study/study_id/ST/species/txt
Fetch sample source information (as text) for all studies	https://www.metabolomicsworkbench.org/rest/study/study_id/ST/source/txt
Fetch disease association (where applicable) for all studies	https://www.metabolomicsworkbench.org/rest/study/study_id/ST/disease
Fetch list of studies with untargeted data in NMDR*New	https://www.metabolomicsworkbench.org/rest/study/study_id/x/untarg_studies/
Fetch untargeted data (where applicable) for an analysis within a study*New	https://www.metabolomicsworkbench.org/rest/study/analysis_id/AN000113 /untarg_data/
Fetch experimental factors for an untargeted data analysis within a study*New	https://www.metabolomicsworkbench.org/rest/study/analysis_id/AN000113 /untarg_factors/
Fetch list of studies with named metabolites in NMDR*New	https://www.metabolomicsworkbench.org/rest/study/study_id /ST/named_metabolites/
Show number of named metbolites in a study*New	https://www.metabolomicsworkbench.org/rest/study/study_id/ST000001 /number_of_metabolites/
Fetch list of studies (as text) containing a RefMet name*New	https://www.metabolomicsworkbench.org/rest/study/refmet_name/Cholesterol /data/txt/
Fetch list of studies (as text) containing a KEGG_ID*New	https://www.metabolomicsworkbench.org/rest/study/kegg_id/C00002/data/txt/
Show metabolite name and RefMet name for a (NMDR) metabolite_id*New	https://www.metabolomicsworkbench.org/rest/study/metabolite_id/ME272191 /available/
Fetch table of results (identified metabolites) for an analysis_id*New	https://www.metabolomicsworkbench.org/rest/study/analysis_id/AN000001 /datatable/
Download table of results (identified metabolites) for an analysis_id*New	https://www.metabolomicsworkbench.org/rest/study/analysis_id/AN000001 /datatable/file

In most cases, output may be specified as JSON or plain text format

MW REST web page contains numerous examples for each context

Metabolomics WorkBench REST service

The Metabolomics WorkBench REST service enables access to a variety of data (including metabolite structures, study metadata and experimental results) using HTTP requests. These requests may be carried out using a web browser or may be embedded in 3rd party applications or scripts to enable programmatic access. Most modern programming languages including PHP, Perl, Python, Java and Javascript have the capability to create HTTP request and interact with datasets such as this REST service.

RefMet context

Gene/protein context

MS search context

RefMet context Fetch all RefMet fields from name https://www.metabolomicsworkbench.org/rest/refmet/name/Cholesterol/all Fetch all RefMet fields from formula https://www.metabolomicsworkbench.org/rest/refmet/formula/C12H24O2/all Standardize metabolite name to RefMet https://www.metabolomicsworkbench.org/rest/refmet/formula/C12H24O2/all Fetch all RefMet database (Name,exact mass,formula,InChiKey,PubChemID,classification)*New https://www.metabolomicsworkbench.org/rest/refmet/name/ Fetch all RefMet names*New https://www.metabolomicsworkbench.org/rest/refmet/name Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/refmet/classification Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/accac/all Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/gene/gene_id/31/gene_name Fetch all protein fields from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Methan stolerance of 0.5 and output as text https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/ftx Perform MS precursor ion search on RefMet database with m/z 253.45, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 252.2, ion-type* M+H and mass https://www.metabolomicsworkbe		
Fetch all RefMet fields from name https://www.metabolomicsworkbench.org/rest/refmet/name/Cholesterol/all Fetch all RefMet fields from formula https://www.metabolomicsworkbench.org/rest/refmet/name/Cholesterol/all Standarize metabolite name to RefMet https://www.metabolomicsworkbench.org/rest/refmet/natch/citrate/name/ Fetch entire RefMet database (Name,exact mass, formula, InChIKey,PubChemID,classification)*New https://www.metabolomicsworkbench.org/rest/refmet/natch/citrate/name/ Fetch all RefMet names *New https://www.metabolomicsworkbench.org/rest/refmet/all Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/refmet/all Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/acaca/all Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/grefiel/all/01/0385/all Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/gene_id/19/all/ WH1 and mass tolerance of 0.5 and output as text https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on LIPIDS virtual database with m/z 255.2; ion-type* M-2H (2) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on LIPIDS virtual database with m/z 251.2, ion-type* M-2H (2) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precur	RefMet context	
Fetch all RefMet fields from formula https://www.metabolomicsworkbench.org/rest/refmet/formula/C12H2402/all Standardize metabolite name to RefMet https://www.metabolomicsworkbench.org/rest/refmet/match/citrate/name/ Fetch entire RefMet database (Name, exact mass, formula, InChIKey, PubChemID, classification)*New https://www.metabolomicsworkbench.org/rest/refmet/all Fetch all RefMet names *New https://www.metabolomicsworkbench.org/rest/refmet/classification Fetch all RefMet names and chemical classification*New https://www.metabolomicsworkbench.org/rest/refmet/classification Gene/protein context Gene/protein context Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/acaca/all Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/gene/gene_id/31/gene_name_id/11/gene_id/19/all/ Fetch all protein fields from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/gene_id/19/all/ Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/.IPIDS/513.45 Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/.IPIDS/513.45 Perform MS precursor	Fetch all RefMet fields from name	https://www.metabolomicsworkbench.org/rest/refmet/name/Cholesterol/all
Standardize metabolite name to RefMet https://www.metabolomicsworkbench.org/rest/refmet/match/citrate/name/ Fetch entire RefMet database (Name, exact mass, formula, InChIKey, PubChemID, classification)*New https://www.metabolomicsworkbench.org/rest/refmet/all Fetch all RefMet names*New https://www.metabolomicsworkbench.org/rest/refmet/name Fetch all RefMet names and chemical classification*New https://www.metabolomicsworkbench.org/rest/refmet/classification Cene/protein context Cene/protein context Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/acaca/all Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5f/x Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Perform MS precursor ion search on MetAbolomics Workbench as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2	Fetch all RefMet fields from formula	https://www.metabolomicsworkbench.org/rest/refmet/formula/C12H24O2/all
Fetch entire RefMet database (Name,exact mass,formula,InChIKey,PubChemID,classification)*New https://www.metabolomicsworkbench.org/rest/refmet/all Fetch all RefMet names *New https://www.metabolomicsworkbench.org/rest/refmet/classification Fetch all RefMet names and chemical classification*New https://www.metabolomicsworkbench.org/rest/refmet/classification Cene/protein context Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene_gene_gymbol/acaca/all Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/leg.eid/19/all/ Mass spectrometry context Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Num aus tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/LI	Standardize metabolite name to RefMet	https://www.metabolomicsworkbench.org/rest/refmet/match/citrate/name/
Fetch all RefMet names*New https://www.metabolomicsworkbench.org/rest/refmet/name Fetch all RefMet names and chemical classification*New https://www.metabolomicsworkbench.org/rest/refmet/classification Gene/protein context Fetch all gene fields from gene symbol Fetch all gene fields from gene symbol Fetch all gene fields from UniProt id Fetch all protein fields from UniProt id Fetch all protein fields from Entrez gene id Fetch all protein fields from Entrez gene id Fetch all protein fields from protein Refseq id Mttps://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from protein Refseq id Mttps://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch mRNA id from protein Refseq id Mttps://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 Metf and mass tolerance of 0.5 and output as text Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on LIPIDS virtual database with m/z 255.2, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 <tr< td=""><td>Fetch entire RefMet database (Name,exact mass,formula,InChIKey,PubChemID,classification)*New</td><td>https://www.metabolomicsworkbench.org/rest/refmet/all</td></tr<>	Fetch entire RefMet database (Name,exact mass,formula,InChIKey,PubChemID,classification)*New	https://www.metabolomicsworkbench.org/rest/refmet/all
Fetch all RefMet names and chemical classification*New https://www.metabolomicsworkbench.org/rest/refmet/classification Gene/protein context https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/acaca/all Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene/gene_id/31/gene_name Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/gene_id/19/all/ Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 /mrma_id/ Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 M+H/0.2/txt https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 M+H/0.2/txt https://	Fetch all RefMet names*New	https://www.metabolomicsworkbench.org/rest/refmet/name
Gene/protein context Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/acaca/all Fetch gene name from Entrez gene id https://www.metabolomicsworkbench.org/rest/gene/gene_id/31/gene_name Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/19/all/ Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 /mrma_id/ mrma_id/ Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 MAS stolerance of 0.2 and output as text /M-2H/0.2/txt https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Output as text /M-2H/0.2/txt htttps:/	Fetch all RefMet names and chemical classification*New	https://www.metabolomicsworkbench.org/rest/refmet/classification
Fetch all gene fields from gene symbol https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/acaca/all Fetch gene name from Entrez gene id https://www.metabolomicsworkbench.org/rest/gene/gene_id/31/gene_name Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/19/all/ Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 <i>Mass spectrometry context</i> Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* M+H and mass tolerance of 0.5 and output as text https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Nu-2H/0.2/txt https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 intra-sitolerance of 0.2 and output as text Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Nu-2H/0.2/txt https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45	Gene/protein conte	xt
Fetch gene name from Entrez gene id https://www.metabolomicsworkbench.org/rest/gene/gene_id/31/gene_name Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/gene_id/19/all/ Fetch all protein fields from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 Mass spectrometry context Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* M+H and mass tolerance of 0.5 and output as text https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Fetch all gene fields from gene symbol	https://www.metabolomicsworkbench.org/rest/gene/gene_symbol/acaca/all
Fetch all protein fields from UniProt id https://www.metabolomicsworkbench.org/rest/protein/gene_id/19/all/ Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/gene_id/19/all/ Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 Mass spectrometry context mrna_id/ Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M-2H (2-) https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Fetch gene name from Entrez gene id	https://www.metabolomicsworkbench.org/rest/gene/gene_id/31/gene_name
Fetch all protein fields from Entrez gene id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/19/all/ Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 Mass spectrometry context Mass spectrometry context Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+2H (2-) and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Fetch all protein fields from UniProt id	https://www.metabolomicsworkbench.org/rest/protein/uniprot_id/Q13085/all
Fetch mRNA id from protein Refseq id https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 Mass spectrometry context Mass spectrometry context Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M-2H (2-) and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Fetch all protein fields from Entrez gene id	https://www.metabolomicsworkbench.org/rest/protein/gene_id/19/all/
Mass spectrometry context Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* M+H and mass tolerance of 0.5 and output as text https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/tx Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 M+H/0.2/txt https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Fetch mRNA id from protein Refseq id	https://www.metabolomicsworkbench.org/rest/protein/refseq_id/NP_005493 /mrna_id/
Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* M+H and mass tolerance of 0.5 and output as text Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) and mass tolerance of 0.2 and output as text Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1)	Mass spectrometry co	ntext
Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Perform MS precursor ion search on Metabolomics Workbench database with m/z 635.52, ion-type* M+H and mass tolerance of 0.5 and output as text	https://www.metabolomicsworkbench.org/rest/moverz/MB/635.52/M+H/0.5/txt
Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Perform MS precursor ion search on LIPIDS virtual database with m/z 513.45, ion-type* M-2H (2-) and mass tolerance of 0.2 and output as text	https://www.metabolomicsworkbench.org/rest/moverz/LIPIDS/513.45 /M-2H/0.2/txt
Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1) https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H	Perform MS precursor ion search on RefMet database with m/z 255.2, ion-type* M+H and mass tolerance of 0.2 and output as text	https://www.metabolomicsworkbench.org/rest/moverz/REFMET/255.2 /M+H/0.2/txt
	Calculate the exact mass (m/z) of the [M+H]+ ion of the lipid abbreviation# PC(34:1)	https://www.metabolomicsworkbench.org/rest/exactmass/PC(34:1)/M+H

MetStat Summary Statistics for experimental datasets in NMDR

Search/Summarize by analysis type (e.g. GCMS , LCMS, NMR) and/or MS ion mode (+ or -)

Search/Summarize by disease association (cancer, diabetes, obesity, etc.)

Search/Summarize by species (human, mouse, rat, etc.)

Search/Summarize by **sample source** (blood, urine, feces, muscle, bacterial cells, etc.)

Summarize by metabolite structural class

What metabolites are **detected** within selected criteria (and which are most commonly detected)?

Which metabolites show significant changes across experimental conditions in selected data?

What (human) biochemical pathways are these metabolites involved in?

What is the average variance across sample replicates for a given metabolite?

What is the **ANOVA p-value** for a given metabolite under a given experimental condition?

MetStat: Summary Statistics for experimental datasets in NMDR

View most frequently encountered metabolites in NMDR studies across all conditions

Me	etStat: Sum	mary table of metabolites r	nost frequently reported in	NMDR studies
Perform det	ailed search	(All metabolite names were mapped	to RefMet nomenclature) Records to	o display: 200 v Submit
Refmet Name	Studies	Super Class	Main Class	Sub Class
Glutamic acid	715	Organic acids	Amino acids and peptides	Amino acids
Phenylalanine	709	Organic acids	Amino acids and peptides	Amino acids
Glutamine	706	Organic acids	Amino acids and peptides	Amino acids
Tyrosine	703	Organic acids	Amino acids and peptides	Amino acids
Valine	683	Organic acids	Amino acids and peptides	Amino acids
Proline	669	Organic acids	Amino acids and peptides	Amino acids
Lysine	669	Organic acids	Amino acids and peptides	Amino acids
Aspartic acid	666	Organic acids	Amino acids and peptides	Amino acids
Tryptophan	650	Organic acids	Amino acids and peptides	Amino acids
Methionine	645	Organic acids	Amino acids and peptides	Amino acids
Alanine	632	Organic acids	Amino acids and peptides	Amino acids
Serine	622	Organic acids	Amino acids and peptides	Amino acids
Isoleucine	599	Organic acids	Amino acids and peptides	Amino acids
Histidine	598	Organic acids	Amino acids and peptides	Amino acids
Leucine	597	Organic acids	Amino acids and peptides	Amino acids
Succinic acid	596		TCA acids	TCA acids
Threenine	595		Amino acids and pentides	Amino acids
Malic acid	505			TCA acids
Lactic acid	503		Short chain acids	Short chain acids
Citrio poid	597	Organic acids		
Chine acid	507	Organic acids	TCA acids	1 CA acids
Orrithing	577	Organic acids	Amino acids and peptides	Amino acida
Omithine	559	Organic acids	Amino acids and peptides	Amino acids
Asparagine	552	Organic acids	Amino acids and peptides	Amino acids
Taurine	527	Organic acids	Sulfonic acids	Sulfonic acids
Fumaric acid	522	Organic acids	I CA acids	I CA acids
Arginine	514	Organic acids	Amino acids and peptides	Amino acids
Hypoxanthine	495	Nucleic acids	Purines	Hypoxanthines
AMP	483	Nucleic acids	Purines	Purine rNMP
Palmitic acid	476	Fatty Acyls	Fatty acids	Saturated FA
Creatinine	466	Organoheterocyclic compounds	Azolines	Imidazolines
Pyroglutamic acid	462	Organoheterocyclic compounds	Pyrroline carboxylic acids	Pyrroline carboxylic acids
Citrulline	461	Organic acids	Amino acids and peptides	Amino acids
Stearic acid	461	Fatty Acyls	Fatty acids	Saturated FA
Glucose	459	Carbohydrates	Monosaccharides	Hexoses
Oxoglutaric acid	455	Organic acids	TCA acids	TCA acids
Inosine	446	Nucleic acids	Purines	Purine ribonucleosides
Pyruvic acid	440	Organic acids	Short-chain acids	Short-chain acids
Oleic acid	432	Fatty Acyls	Fatty acids	Unsaturated FA
Carnitine	430	Organic nitrogen compounds	Carnitines	Carnitines
Creatine	424	Organic acids	Amino acids and peptides	Amino acids
Pantothenic acid	412	Organic acids	Amino acids and peptides	Amino acids
Uric acid	407	Nucleic acids	Purines	Xanthines
Xanthine	406	Nucleic acids	Purines	Xanthines
Liridino	204	Nucloio acido	Pyrimidinos	Pyrimidino ribonuoloosidos

Links to MW structure database and list of studies containing each metabolite

Refmet Name	Studies	Super Class	Main Class	Sub Class
Glutamic acid	452	Organic acids	Amino acids and peptides	Amino acids
Tyrosine	441	Organic acids	Amino acids and peptides	Amino acids
Phenylalanine	437	Organic acids	Amino acids and peptides	Amino acids
Glutamine	435	Organic acids	Amino acids and peptides	Amino acids
Valine	428	Organic acids	Amino acids and peptides	Amino acids
Aspartic acid	423	Organic acids	Amino acids and peptides	Amino acids
Proline	413	Organic acids	Amino acids and peptides	Amino acids
Lysine	407	Organic acids	Amino acids and peptides	Amino acids
Malic acid	404	Organic acids	TCA acids	TCA acids
Tryptophan	395	Organic acids	Amino acids and peptides	Amino acids
Methionine	394	Organic acids	Amino acids and peptides	Amino acids
Isoleucine	392	Organic acids	Amino acids and peptides	Amino acids
Alanine	390	Organic acids	Amino acids and peptides	Amino acids

Structure (MW database)

List of Studies

	Study title
stuay_ia	study_true
ST000009 &	Mixed meal tolerance
ST000010 &	Lung Cancer Cells 4
ST000011 &	African Metabolomics
ST000016 &	NPM-ALK metabolic regulation
ST000017 🗗	Rat HCR/LCR Stamina Study
ST000040 &	Heatshock response of C. elegans using IROA (I)
ST000041 &	High PUFA diet in humans
ST000042 🗗	BALF Control vs ALI by RPLC-MS
ST000043 rନ୍ଦ	MDA-MB-231 cells and p38 gamma knockdown

In this example, all human studies with blood* as the sample source are selected

* "Blood" may refer to whole blood, serum or plasma-see individual study metadata for details

MetStat summary table of human metabolites detected in blood

Sorted by number of studies in which that metabolite is reported

Refmet Name [Pathways]	Studies [Data	RSD	Main Class	Sub Class	
Proline [P]	111 [Data]	32.29	Amino acids and peptides	Amino acids	
Tryptophan [P]	110 [Data]	22.04	Amino acids and peptides	Amino acids	
Phenylalanine [P]	110 [Data,	21.72	Amino acids and peptides	Amino acids	
Tyrosine [P]	108 [Data]	25.5	Amino acids and peptides	Amino acids	
Valine [P]	108 [Data]	24.01	Amino acids and peptides	Amino acids	
Glutamine [P]	105 [Data]	25.71	Amino acids and politices	Amino acids	
Histidine [P]	105 [Data]	25.80	Amino acids and peptides	Amino acids	
Methionine [P]	105 [Data]	26.67	Amino acids and peptides	Aurino acids	
Lysine [P]	105 [Data]	26.12	Amino acids and peptides	Amino actos	
Glutamic acid [P]	101 [Data]	43.28	Amino acids and peptides	Amino acids	
Ornithine [P]	101 [Data]	34.02	Amino acids and peptides	Amino acids	
Serine [P]	99 [Data]	26.11	Amino acids and peptides	Amino acids	
Isoleucine [P]	99 [Data]	28.60	Amino acids and peptides	Amino acids	
Leucine [P]	98 [Data]	27.90	Amino acids and peptides	Amino acids	
Creatinine [P]	95 [Data]	29.39	Azolines	Imidazolines	
Stearic acid [P]	94 [Data]	30.47	Fatty acids	Saturated FA	
Alanine [P]	93 [Data]	26.38	Amino acids and peptides	Amino acids	
Uric acid [P]	92 [Data]	25.65	Purines	Xanthines	
Linoleic acid [P]	91 [Data]	50.53	Fatty acids	Unsaturated FA	
Asparagine [P]	89 [Data]	25.38	Amino acids and peptides	Amino acids	
Threonine [P]	88 [Data]	27.93	Amino acids and peptides	Amino acids	
Palmitic acid [P]	88 [Data]	33.31	Fatty acids	Saturated FA	
Oleic acid [P]	88 [Data]	49.22	Fatty acids	Unsaturated FA	
Aspartic acid [P]	87 [Data]	39.78	Amino acids and peptides	Amino acids	
Taurine [P]	84 [Data]	39.66	Sulfonic acids	Sulfonic acids	
Arachidonic acid [P]	84 [Data]	42.06	Fatty acids	Unsaturated FA	
Citrulline [P]	83 [Data]	29.88	Amino acids and peptides	Amino acids	
Lactic acid [P]	82 [Data]	37.17	Short-chain acids	Short-chain acids	
Citric acid [P]	82 [Data]	30.27	TCA acids	TCA acids	
Palmitoleic acid [P]	82 [Data]	63.72	Fatty acids	Unsaturated FA	
Myristic acid [P]	81 [Data]	42.07	Fatty acids	Saturated FA	
Glycine [P]	81 [Data]	30.30	Amino acids and peptides	Amino acids	
Arginine [P]	81 [Data]	26.07	Amino acids and peptides	Amino acids	
Malic acid [P]	80 [Data]	35.52	TCA acids	TCA acids	
Hver anthrie [P]	80 [Data]	55.48	Purines	Hypoxanthines	
Succinic acid [P]	80 [Data]	33.90	TCA acids	TCA acids	
Cholesterol [P]	79 [Data]	24.16	Sterols	Cholesterols	
Pyroglutamic acid [P]	78 [Data]	31.77	Pyrroline carboxylic acids	Pyrroline carboxylic acids	
Kynurenine (P)	75 [Data]	30.52	Butyrophenones	Butyrophenones	
rightaroninio [r]					

[P]:Human Pathways (SMP/KEGG)

Relative standard deviation (RSD) =100*Standard deviation/mean The RSD is calculated separately for each experimental condition within each study. It is a measure of the variance across sample replicates

MetStat "data" link displays a histogram of RSD data across all studies containing Valine Additional data on ANOVA statistics in each study and RSD/replicate information

Refmet Name [Pathways]	Studies [Data Details]	RSD	Main Class	Sub Class
Proline [P]	111 [Data]	32.29	Amino acids and peptides	Amino acids
Tryptophan [P]	110 [Data]	22.04	Amino acids and peptides	Amino acids
Phenylalanine [P]	110 [Data]	21.72	Amino acids and peptides	Amino acids
[Vrosine [P]	108 [Data]	25.31	Amino acids and peptides	Amino acids
Valine [P]	108 [Data]	24.01	Amino acids and peptides	Amino acids
Glutamine [P]	105 [Data]	25.1	Amino acids and peptides	Amino acids
Histidine [P]	105 [Data]	25.80	Amino ac. h and peptides	Amino acids
Methionine [P]	105 [Data]	26.67	Amino acids and pepulat	Amino acids
Lysine [P]	105 [Data]	26.12	Amino acids and peptides	Amino acids
Glutamic acid [P]	101 [Data]	43.28	Amino acids and peptides	Amino a, ide
Ornithine [P]	101 [Data]	34.02	Amino acids and peptides	Amino acids
Serine [P]	99 [Data]	26.11	Amino acids and peptides	Amino acids
soleucine [P]	99 [Data]	28.60	Amino acids and peptides	Amino acids
Leucine [P]	98 [Data]	27.90	Amino acids and peptides	Amino acids
Creatinine [P]	95 [Data]	29.39	Azolines	Imidazolines
Stearic acid [P]	94 [Data]	30.47	Fatty acids	Saturated FA
Alanine [P]	93 [Data]	26.38	Amino acids and peptides	Amino acids
Jric acid [P]	92 [Data]	25.65	Purines	Xanthines
inoleic acid [P]	91 [Data]	50.53	Fatty acids	Unsaturated FA
sparagine [P]	89 [Data]	25.38	Amino acids and peptides	Amino acids
Threonine [P]	88 [Data]	27.93	Amino acids and peptides	Amino acids
Palmitic acid [P]	88 [Data]	33.31	Fatty acids	Saturated FA
Oleic acid [P]	88 [Data]	49.22	Fatty acids	Unsaturated FA
Aspartic acid [P]	87 [Data]	39.78	Amino acids and peptides	Amino acids
Taurine [P]	84 [Data]	39.66	Sulfonic acids	Sulfonic acids
Arachidonic acid [P]	84 [Data]	42.06	Fatty acids	Unsaturated FA
Citrulline [P]	83 [Data]	29.88	Amino acids and peptides	Amino acids
Lactic acid [P]	82 [Data]	37.17	Short-chain acids	Short-chain acids
Citric acid [P]	82 [Data]	30.27	TCA acids	TCA acids
Palmitoleic acid [P]	82 [Data]	63.72	Fatty acids	Unsaturated FA
Myristic acid [P]	81 [Data]	42.07	Fatty acids	Saturated FA
Glycine [P]	81 [Data]	30.30	Amino acids and peptides	Amino acids
Arginine [P]	81 [Data]	26.07	Amino acids and peptides	Amino acids
Malic acid [P]	80 [Data]	35.52	TCA acids	TCA acids
Hypoxanthine [P]	80 [Data]	55.48	Purines	Hypoxanthines
Succinic acid [P]	80 [Data]	33.90	TCA acids	TCA acids
Cholesterol [P]	79 [Data]	24.16	Sterols	Cholesterols
Pyroglutamic acid [P]	78 [Data]	31.77	Pyrroline carboxylic acids	Pyrroline carboxylic acids
Kynurenine [P]	75 [Data]	30.52	Butyrophenones	Butyrophenones
LPC 16:0 [P]	74 [Data]	35.90	Glycerophosphocholines	LPC
Camitine (D)	73 [Data]	23.34	Carnitines	Carnitines

Valine(Name:Valine Source:Blood Species:Human) ANOVA results for this metabolite where p-value <=0.05

Name	Study_id	Analysis_id	ANOVA p-Value	FDR	Experimental Conditions (factors)
Valine	ST000589	AN000904	3.769E-270	5.905E-269	Plasma Volume Extracted;0 uL;100 uL;150 uL;200 uL;25 uL;300
valine	ST001386	AN002314	1.642E-122	1.689E-121	cc;1;2;3;4;5;6
valine	ST000385	AN000620	3.140E-38	2.170E-37	Organ;Plasma;Serum;Serum or Plasma
Valine	ST000586	AN000901	2.250E-28	9.080E-28	Plasma Volume;0 uL;150 uL;700 uL
valine	ST001815	AN002944	1.722E-22	4.147E-22	Timepoint;-;3
valine	ST001842	AN002985	1.051E-23	8.249E-22	Organ;plasma;liver
VALINE (M+H)+	ST000842	AN001357	2.120E-21	7.450E-21	Sample type;Muscles;Plasma;Pooled sample
L-valine	ST000608	AN000931	7.270E-19	1.420E-18	Sample_Type;blotter;serum
Valine	ST000051	AN000087	2.540E-15	1.840E-14	As Exposure;high;low;Pooled-High;Pooled-Low;Pooled-Total
Valine 1 - CPMG-1	ST000892	AN001454	2.960E-15	2.360E-14	Sample type;Extracted plasma;Intact plasma
Valine 2 - CPMG-1	ST000892	AN001454	3.000E-15	2.360E-14	Sample type;Extracted plasma;Intact plasma
Valine 2 - CPMG-2	ST000892	AN001454	2.580E-15	2.360E-14	Sample type;Extracted plasma;Intact plasma
Valine 1 - PROJECT-1	ST000892	AN001454	5.080E-15	3.000E-14	Sample type;Extracted plasma;Intact plasma
Valine 2 - PROJECT-1	ST000892	AN001454	6.830E-15	3.230E-14	Sample type;Extracted plasma;Intact plasma
Valine 1 - CPMG-3	ST000892	AN001454	8.000E-15	3.360E-14	Sample type;Extracted plasma;Intact plasma
Valine 2 - CPMG-3	ST000892	AN001454	8.050E-15	3.360E-14	Sample type;Extracted plasma;Intact plasma
L-valine 1	ST000865	AN001390	1.080E-13	2.020E-13	Patient group;CIRR;HCC;Pool CIRR;Pool HCC;POSSIBLE CASE;-
1411015	07000004		1 1005 10	0.0405.40	

Valine(Name:Valine Source:Blood Species:Human) List of studies, analyses, submitted metabolite names, experimental conditions and RSD values

Replicate numbers reflect the number of replicates for each experimental condition where the measured value was not null

Name	Study_id Analysis_	id Factors	Range(RS	D) Replicates
Valine	ST000046 AN000079	Cognitive Status:AD	23.56	30
Valine	ST000046 AN000079	Cognitive Status:CN	17.51	30
Valine	ST000046 AN000079	Cognitive Status:MCI	20.69	30
Valine	ST000051 AN000087	As Exposure:high	19.32	25
Valine	ST000051 AN000087	As Exposure:low	18.43	25
valine	ST000062 AN000100	Source:Group 1 - Score 0	19.37	48
valine	ST000062 AN000100	Source:Group 2 - Score 50	18.63	49
Val_Valine	ST000091 AN000145	Treatment:Control	16.59	9
Val_Valine	ST000091 AN000145	Treatment:Insulin Deprived	22.96	8
Val_Valine	ST000091 AN000145	Treatment:Insulin Treatment	20.16	9

List of human studies on blood that report Proline

Study_id	Analysis_id	Study_title	Source	Species	Disease	Institute	Units(range)
ST001037	AN001698	High Resolution GC-MS and FID Metabolomics of Human Serum	Blood	Human		Wake Forest Baptist Medical Center	Abundance
ST000450	AN000705	Metabolic features of chronic fatigue syndrome	Blood	Human	Chronic fatigue syndrome	University of California, San Diego	Area under curve
ST000617	AN000947	Validation of the application of targeted metabolomic appraoch in the diagnosis of CFS	Blood	Human	Chronic fatigue syndrome	University of California, San Diego	Area under curv
ST000041	AN000062	High PUFA diet in humans	Blood	Human		University of Michigan	Counts
ST000041	AN000063	High PUFA diet in humans	Blood	Human		University of Michigan	Counts
ST000105	AN000173	SCOR Metabolomics	Blood	Human		University of Chicago	Counts
ST000105	AN000174	SCOR Metabolomics	Blood	Human		University of Chicago	Counts
ST000106	AN000175	IWMS Study 1:Weight comparison of obese and lean patients	Blood	Human	Obesity	University of Michigan	Counts
ST000106	AN000176	IWMS Study 1:Weight comparison of obese and lean patients	Blood	Human	Obesity	University of Michigan	Counts
ST000368	AN000602	Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung cancer	Blood	Human	Cancer	University of California, Davis	Counts

•••

ST001515 AN002511	A Metabolomic Signature of Glucagon Action in Healthy Individuals with Overweight/Obesity Humans	Blood	Human	Obesity	Translational Research Institute- AdventHealth Orlando	scaled units
ST000091 AN000145	Quantitative Metabolomics by 1H-NMR and LC-MS/MS Confirms Altered Metabolic Pathways in Diabetes	Blood	Human	Diabetes	Mayo Clinic	uM
ST000137 AN000219	Metabolomics in sarcoidosis	Blood	Human	Sarcoidosis	Wayne State University	uM
ST000168 AN000262	Effect of Insulin Sensitizer Therapy on Amino Acids and Their Metabolites	Blood	Human	Diabetes	Mayo Clinic	uM
T000435 AN000685	Quantitative measurements of amino acids in T1D poor control, good control, and controls.	Blood	Human	Diabetes	Mayo Clinic	uM
T000483 AN000749	Amino Acid Quantifcation of obese patients on a 16 week caloric restriction from Plasma	Blood	Human	Obesity	Mayo Clinic	uM
T000491 AN000757	Sleep apnea and cardiovascular samples amino acid metabolites	Blood	Human	Sleep apnea	Mayo Clinic	uM
T000524 AN000802	Effects of Curcumin Supplementation on the Amino Acid Concentration of Older Adults: Relation to Vascular Function	Blood	Human	Heart disease	Mayo Clinic	uM
T000605 AN000926	Whole blood reveals more metabolic detail of the human metabolome than serum as measured by 1H-NMR spectroscopy: Implications for sepsis metabolomics	Blood	Human		University of Michigan	uM
T000641 AN000973	Targeted Amino Acids in American Indian Adolescents (part II)	Blood	Human	Diabetes	Mayo Clinic	uM
T000783 AN001239	Absolute Quantification of 180 metabolites in serum from african american and european american in prostate cancer and case control samples	Blood	Human	Cancer	Baylor College of Medicine	uM
T000785 AN001244	Pharmacometabolomics of L-Carnitine Treatment Response Phenotypes in Patients with Septic Shock	Blood	Human	Sepsis	University of Michigan	uM
F000825 AN001311	CHEAR Christiani Biocrates	Blood	Human		RTI International	uM
000826 AN001414	CHEAR Christiani NMR	Blood	Human		RTI International	uM
000876 AN001413	Human serum for a patient with neuropathy being treated with L-serine.	Blood	Human	Neuropathy	University of Helsinki	uM
000944 AN001549	Amino Acids, Acylcarnitine, & Insulin for P20 Participants	Blood	Human		University of Michigan	uM
000995 AN001624	Amino Acid Concentrations of Primary Sclerosing Cholangitis (part I)	Blood	Human		Mayo Clinic	uM
T001012 AN001654	Amino Acid Concentrations in Serum for Muscle Wasting in Cancer Cachexia (part-VII)	Blood	Human	Cachexia	Mayo Clinic	uM
T001097 AN001785	Metabolomics of Metabolic Risk in Patients Taking Atypical Antipsychotics	Blood	Human	Schizophrenia	University of Michigan	uM
T001176 AN001952	Metabolite changes in human plasma before and after YF17D vaccination in symptomatic and asymptomatic subjects	Blood	Human	Yellow fever	Duke-NUS Medical School	uM
T001295 AN002156	Estimating Platelet Mitochondrial Function in Patients with Sepsis - WB NMRs (part-II)	Blood	Human	Sepsis	University of Michigan, University of Mississippi, University of Minnesota	uM
T001319 AN002195	Pre-treatment L-Carnitine Pharmacometabolomics in Sepsis (CaPS) Patients	Blood	Human	Sepsis	University of Michigan	uM
T001354 AN002253	48 hours post-treatment L-Carnitine Pharmacometabolomics in Sepsis (CaPS) Patients	Blood	Human	Sepsis	University of Michigan	uM
T001521 AN002533	Plasma metabolites of known identity profiled using hybrid nontargeted methods (part-III)	Blood	Human		Broad Institute of MIT and Harvard	unitless peak areas

Click on a study link in the "Units(range) column

Focus on the targeted assays that report quantitative results (untargeted assays that report peak intensity, area, etc. are no good)

Boxplot for Proline in human blood

Study ST000091

Comparison with all studies (yellow) that report proline in human blood. Notice the outlier(s) since many different studies are involved. However, the median is not significantly affected.

	Analysis Type:	LCMS V	MS Ion Mode:	NEGATIVE 🗸	J				
	Chromatography Type:	HILIC ~]			1 Amino acid/peptides			
	Species:		Sp. class:		~	2 Glycerolipids			
	Dicease:					4 Terpenoids			
	Disease.		•			5 Sugars			
	Sample source:	Blood (32) ~			MetStat: Search	parameters: Source:Blood	Analysis Type:LC	MS Ion mode:NEGATIVE C	hromatography type:Hll
,	RefMet name:	Contains 🗸	(0	case insensitiv		ANOVA measurements	Studies [Data	DSD Main Class	Sub Class
	Metabolite superclass:	All v			Lactic acid [P]	1	Details] 23 [Data]	34.01 Short-chain acids	Short-chain acids
	Human pathway:				Succinic acid [P] Glucose [P]		21 [Data] 17 [Data]	36.45 TCA acids 22.87 Monosaccharides	TCA acids Hexoses
	Records to display:		Generate	Reget	Uracil [P] Taurine [P]		17 [Data] 17 [Data]	38.66 Pyrimidines 26.77 Sulfonic acids	Pyrimidines Sulfonic acids
					Pyruvic acid [P] Malic acid [P]		17 [Data] 17 [Data]	35.50 Short-chain acids 23.72 TCA acids	Short-chain acids TCA acids
L					Fumaric acid [P] Aspartic acid [P]		17 [Data] 17 [Data]	31.66 TCA acids 26.48 Amino acids and peptides	TCA acids Amino acids
					Orotic acid [P]		15 [Data]	46.14 Pyrimidines	Pyrimidine carboxylic acids
					Oxogiutaric aciu [i]		15 [Data]	34.52 TCA acids	TCA acids
ANOVA results for	all metabolites where p-value <=0.05 (Source	e:Blood Analysis Type:LCMS lon mode:NEG	ATIVE		Gluconic acid [P] Hypoxanthine [P]		15 [Data] 15 [Data] 15 [Data]	32.80 Monosaccharides 53.18 Purines	TCA acids Sugar acids Hypoxanthines
ANOVA results for Chromatography ty Refmet Name	all metabolites where p-value <=0.05 (Source pe:HILIC)	EBlood Analysis Type:LCMS Ion mode:NEG	ATIVE		Gluconic acid [P] Hypoxanthine [P] Xanthine [P]		15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data]	33.32 TCA actus 32.80 Monosaccharides 53.18 Purines 52.44 Purines 43.41 Ureas	TCA acids Sugar acids Hypoxanthines Xanthines Urrides
ANOVA results for Chromatography ty Refmet Name Glutathione FAD	all metabolites where p-value <=0.05 (Source pe:HILIC) Study_id Analysis_id ANOVA p-value ST000121 AN000203 8.370E-169 ST000121 AN000203	Blood Analysis Type:LCMS Ion mode:NEG FOR Experimental Conditions (factors) 1 0/0E-166 Tissue Epidolymal white adipose (lati),Gastrocremin 4 050E-161 Tissue Epidolymal white adipose (lati),Gastrocremin	ATIVE as (skeleta as (skeleta		Gluconic acid [P] Hypoxanthine [P] Xanthine [P] Allantoin [P] Uridine [P]		15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 14 [Data]	34:32 TCA actus 32:80 Monosaccharides 35:18 Purines 52:44 Purines 43:41 Ureas 26:52 Pyrimidines 20:20 Phenapia and actuality	TCA acids Sugar acids Hypoxanthines Xanthines Ureides Pyrimidine ribonucleosides Inseiter
ANOVA results for Chromatography ty Refmet Name Glutathione FAD ADP-glucose TTP ATP	all metabolites where p-value <=0.05 (Source pe:HILLC) Study_id Anabys_id ANOVA stooo121 AN000203 8.370E-169 stooo121 AN000203 2.470E-155 stooo121 AN000203 2.470E-155 stooo121 AN000203 2.470E-155 stooo121 AN000203 2.470E-155	Blood Analysis Type:LCMS Ion mode:NEG DOR Experimental Conditions (fectors) 1070E-160 Tissue;Epiddymal white adjoose (fat) (Bastrocennii, 4050E-161 Tissue;Epiddymal white adjoose (fat) (Bastrocennii, 100E-153 Tissue;Epiddymal white adjoose (fat) (Bastrocennii, 5420E-150 Tissue;Epiddymalwite;Epiddymal	ATIVE 25 (Skoleta 26 (Skoleta 26 (Skoleta 26 (Skoleta		Gluconic acid [F] Gluconic acid [F] Hypoxanthine [P] Allantoin [P] Uridine [P] Myo-inositol [P] Citric acid [P]		15 [Data] 15 [Data] 15 [Data] 15 [Data] 14 [Data] 14 [Data] 14 [Data]	34:32 TCA actus 32:80 Monosaccharides 53:18 Purines 52:44 Purines 26:52 Pyrimidines 30:02 Alcohols and polyols 37:70 TCA acids	TCA acids Sugar acids Hypoxanthines Xanthines Ureides Pyrimidine ribonucleosides Inositols TCA acids
ANOVA results for Chromatography ty Refinel Name Goldathione FAD ADP-glucose TP ATP NAD+ ENN ADP- ENN ADP- ENN ADP- ENN	all metabolites where p-value <=0.05 (Source pe:HILIC) Study_id Analysis_d ANOVA sT000121 AN000203 & 370E-100 ST000121 AN000203 2 470E-155 ST000121 AN000203 2 470E-155 ST000121 AN000203 6 460E-147 ST000121 AN000203 4 500E-157	Blood Analysis Type:LCMS Ion mode:NEG Experimental Conditions (tectors) 1070:E1150 Tissue Epidymal white adopose (tal) Castrocommo 4060:E111 Tissue Epidymal white adopose (tal) Castrocommo 1050:E153 Tissue Epidymal white adopose (tal) Castrocommo 4060:E141 Tissue Epidymal white adopose (tal) Castrocommo	ATIVE IS (Skoleta IS (Skoleta		Gluconic acid (P) Hypoxanthine (P) Manthine (P) Undine (P) Undine (P) Glitic acid (P) Stearic acid (P) Uric acid (P)		15 [Data] 15 [Data] 15 [Data] 15 [Data] 14 [Data] 14 [Data] 13 [Data] 13 [Data] 13 [Data]	34:32 TCA actus 32:80 Monosaccharides 53:18 Purines 53:44 Purines 34:11 Ureas 26:52 Pyrimidines 30:02 Alcohols and polyols 37:70 TCA acids 29:41 Fatty acids 31:45 Purines	TCA acids Sugar acids Hypoxanthines Vanthines Ureides Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines
ANOVA results for Chromatography to Refmet Name Glutathione FAD ADP-glucose TIP FAD ADP-glucose TIP FMN Samyl pyrophosphale Et-lydroxybenzole acid	all metabolites where p-value <=0.05 (Source pe:HILIC) Study_id Analysis_et ANOVA ST000121 AN000203 8 32/06-169 ST000121 AN000203 2 47/06-155 ST000121 AN000203 2 47/06-155 ST000121 AN000203 2 47/06-155 ST000121 AN000203 2 47/06-155 ST000121 AN000203 1 83/06-131 ST000121 AN000203 1 83/06-131 ST000121 AN000203 5 67/06-128	Blood Analysis Type:LCMS Ion mode:NEG DOR Experimental Conditions (lectors) 1070E-166 Tissue Epididymal white adgrose (lat)(Gastrocennii, 0.005E-153 Tissue,Epididymal white adgrose (lat)(Gastrocennii, 0.405E-150 Tissue,Epididymal white adgrose (lat)(Gastrocennii, 0.405E-150 Tissue,Epididymal white adgrose (lat)(Gastrocennii, 0.405E-145 Tissue,Epididymal white adgrose (lat)(Gastrocennii, 0.409E-144 Tissue,Epididymal white adgrose (lat)(Gastrocennii, 0.409E-144 Tissue,Epididymal white adgrose (lat)(Gastrocennii, 7.100E-130 Tissue,Epididymal white adgrose (lat)(Gastrocennii), 7.100E-130 Tissue,Epididymal white adqrose (lat)(Gastrocennii), 7.100E-130 Tissue,Epididymal white adqrose (lat)(Gastrocennii), 7.100E-130 Tissue,Epididymal white adqrose (lat)(Gas	ATIVE 45 (Skoleta 15 (Skoleta 15 (Skoleta 15 (Skoleta 15 (Skoleta 15 (Skoleta 15 (Skoleta 15 (Skoleta 15 (Skoleta		Gluconic acid [P] Hypoxanthine [P] Xanthine [P] Allantoin [P] Uridine [P] Citric acid [P] Citric acid [P] Stearic acid [P] Uric acid [P] ADP [P] sn-Glycero-3-phosphate	[P]	15 (Data) 15 (Data) 15 (Data) 15 (Data) 14 (Data) 14 (Data) 14 (Data) 13 (Data) 13 (Data) 13 (Data) 12 (Data)	34:32 TCA actos 32:80 Monosaccharides 53:18 Purines 52:44 Purines 26:52 Pyrimidinas 30:02 Alcohols and polyols 37.70 TCA acids 29:41 Fatty acids 31:45 Purines 30:99 Purines 26:41 Organic phosphoric acids	TCA acids Sugar acids Hypoxanthines Vanthines Ureides Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines Purime rNDP Organic phosphoric acids
ANOVA results for Chromatography to Refmet Name Glutathione AD ADP-glucose TP TP AND-4 Sanayl pyrophosphate 4-Hydroxybenzote acid 5-Phosphogluconic acid NADP+	all metabolites where p-value <=0.05 (Source pe:HILIC) Study_id Anatysis_ed ANOVA ST000121 AN000203 8.370E-169 ST000121 AN000203 2.470E-153 ST000121 AN000203 2.470E-153 ST000121 AN000203 2.40E-161 ST000121 AN000203 2.40E-161 ST000121 AN000203 2.40E-161 ST000121 AN000203 2.40E-161 ST000121 AN000203 2.40E-161 ST000121 AN000203 2.40E-161 ST000121 AN000203 2.470E-172 ST000121 AN000203 2.470E-172 ST000121 AN000203 2.470E-172 ST000121 AN000203 4.90E-142 ST000121 AN000203 8.470E-172 ST000121 AN000203	Blood Analysis Type:LCMS Ion mode:NEG Experimental Conditions (tactors) 1070cc 1160 Tassic Epiddymal white adpose (tal) Castrocommis 4050cc 115 Tassee Epiddymal white adpose (tal) Castrocommis 400cc 141 Tassee Epiddymal white adpose (tal) Castrocommis 100cc 130 Tassee Epiddymal white adpose (tal) Castrocommis 100cc 121 Tassee Epiddymal white adpose (tal) Castrocommis 1050cc 120 Tassee Epiddymal white adpose (tal) Castrocommis 1050cc 120 Tassee Epiddymal white adpose (tal) Castrocommis 1050cc 121 Tassee Epiddymal white adpose (tal) Castrocommis 31 40cc 124 Tassee Epiddymal white adpose (tal) Castrocommis 31 40cc 124 Tassee Epiddymal white adpose (tal) Castrocommis 30cc 124 Tassee Epiddymal white adpose (tal) Castrocommis 30ccmise 124 Tassee Epiddymal white adpose (tal) Castrocommis 30c	ATIVE		Gluconic acid [P] Hypoxanthine [P] Xanthine [P] Allantoin [P] Uridine [P] Gliric acid [P] Stearic acid [P] Unc acid [P] Unc acid [P] SharGlycero-3-phosphate Glyceric acid [P] Benzoic acid [P]	[P]	13 [Data] 15 [Data] 15 [Data] 15 [Data] 14 [Data] 14 [Data] 14 [Data] 13 [Data] 13 [Data] 12 [Data] 12 [Data] 12 [Data]	34:32 TCA actos 32:80 Monosaccharides 53:18 Purines 52:44 Purines 32:05 Pyrimidines 30:02 Alcohols and polyols 37:70 TCA acids 29:41 Fatty acids 30:99 Purines 26:41 Organic phosphoric acids 19:46 Monosaccharides 37:94 Benzoic acids	TCA acids Sugar acids Hypoxanthines Xanthines Ureides Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines Purine rNDP Organic phosphoric acids Sugar acids Benzoic acids
ANOVA results for Chromatography (c) Refmet Name Glutathione FAD ADP-glucose TFP NADP- Serany (pyrophosphate EFMN SDP Gerany (pyrophosphate E-Phosphogluconic acid B-Phosphogluconic acid MADP+ Creatino Demension (co	all metabolites where p-value <=0.05 (Source pe:HILIO) Study_id Anatysis_id ANOVA ST000121 AN00023 8.370E-100 ST000121 AN00023 8.370E-100 ST000121 AN00023 2.470E-155 ST000121 AN00023 2.470E-125 ST00121 AN00023 2.	Blood Analysis Type:LCMS Ion mode:NEG Experimental Conditions (tectors) 1070:E118 Tassie Epiddymal white adipose (atil, Castrocomm, 4000:E115 Tassie Epiddymal white adipose (atil, Castrocomm, 100:E115 Tassie Epiddymal white adipose (atil, Castrocomm, 100:E121 Tassie Epiddymal white adipose (atil, Castrocomm, 100:E1	ATIVE S (Skalela S (S (Skalela S (Skalela S (Skalela S (Skalela S (Skalela S (Skalela S (Skalela S (Skalela S (S		Gluconic acid [P] Hypoxanthine [P] Alantoin [P] Uridine [P] Citric acid [P] Citric acid [P] Citric acid [P] Uric acid [P] ADP [P] sn-Glycero-3-phosphate Glycero acid [P] Benzoic acid [P] Pantothenic acid [P] Pyroglutamic acid [P]	[P]	15 [Data] 14 [Data] 14 [Data] 13 [Data] 13 [Data] 12 [Data] 11 [Data]	34:30 TCA actos 32:80 Monosaccharides 53:18 Purines 52:44 Purines 26:52 Pyrimidines 30:02 Alcohols and polyols 37.70 TCA acids 29:41 Fatty acids 31:45 Purines 30:99 Purines 26:41 Organic phosphoric acids 19:46 Monosaccharides 37:94 Benzoic acids and peptides 38:63 Pyrroline carboxylic acids	TCA acids Sugar acids Hypoxanthines Vanthines Vreides Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines Purine rNDP Organic phosphoric acids Sugar acids Benzoic acids Amino acids Pyrroline carboxylic acids
ANOVA results for Chromatography to Refmet Name Glutathione FAD ADP-glucose TP TP TP TP Caranyi prophosphate 64-tydroxybenzoc acid 5-thosphogluconic acid 6-thosphogluconic acid 5-thosphogluconic acid 5-thosphogluconic acid 5-thosphogluconic acid Creatine Creatine Creatine DP-N acityglucosamine	all metabolites where p-value <=0.05 (Source pe:HILIC) Study_id Anatysis_et ANOVA ST000121 AN000203 8.370E-140 ST000121 AN000203 2.470E-155 ST000121 AN000203 2.470E-155 ST000121 AN000203 2.470E-155 ST000121 AN000203 2.470E-155 ST000121 AN000203 2.470E-155 ST000121 AN000203 2.470E-155 ST000121 AN000203 3.470E-126 ST000121 AN000203 3.470E-126 ST000121 AN000203 1.930E-131 ST000121 AN000203 1.270E-127 ST000121 AN000203 1.270E-127 ST000121 AN000203 1.270E-127 ST000121 AN000203 1.270E-127 ST000121 AN000203 1.200E-123 ST000121 AN000203 1.200E-123 ST000121 AN000203 2.270E-127 ST000121 AN000203 2.270E-127 ST00121 AN00020	Blood Analysis Type:LCMS Ion mode:NEG Experimental Conditions (tectors) 1070cc 166 Tissue Epiddymal white adpose (tat) Castrocommin todo:151 Tissue Epiddymal white adpose (tat) Castrocommin todo:150 Tissue Epiddymal white adpose (tat) Castrocommin todo:150c1 Tissue Epiddymal white adpose (tat) Castrocommin todo:121 Tissue Epiddymal white adp	ATIVE is (skeleta (s (skeleta) (s (skeleta (s (skeleta) (s (s		Gluconic acid [P] Hypoxanthine [P] Aliantoin [P] Myo-inositol [P] Citric acid [P] Stearic acid [P] Unc acid [P] Unc acid [P] Banzoic acid [P] Pantothenic acid [P] Pyroglutamic acid [P] Indoxyl sulfate [P]	[P]	15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 14 [Data] 14 [Data] 13 [Data] 13 [Data] 12 [Data] 11 [Data] 11 [Data] 11 [Data] 11 [Data]	34.32 TCA actos 32.80 Monosaccharides 53.18 Purines 52.44 Purines 43.41 Ureas 26.52 Pyrimidines 30.02 Alcohols and polyols 37.70 TCA acids 29.41 Fatty acids 33.99 Purines 26.41 Organic phosphoric acids 19.46 Monosaccharides 37.94 Benzoic acids 42.07 Amino acids and peptides 38.63 Pyrroline carboxylic acids 41.57 Fatty acids 46.04 Indoles	TCA acids Sugar acids Hypoxanthines Vireides Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines Purine rNDP Organic phosphoric acids Benzoic acids Benzoic acids Unsaturated FA Indoles
ANOVA results for Chromatography to Refmet Name Chutathione FAD ADP-glucose TP ATP ATP ATP ATP ATP Seranyi pyrophosphate Geranyi pyrophosphate deltydroxybenzore acid Seranyi pyrophosphate deltydroxybenzore acid Seranyi pyrophosphate deltydroxybenzore acid Seranyi pyrophosphate deltydroxybenzore acid Seranyi pyrophosphate deltydroxybenzore acid Seranyi pyrophosphate deltydroxybenzore acid DP-glucose UDP-N acottydµcosamine Taurine N-acottyl-Dglucosamine-Tp	ali metabolites where p-value <=0.05 (Source pe:HILIO) Study_id Anatysis_et ANOVA ST000121 AN00023 8 370E-169 ST000121 AN00023 2 470E-155 ST000121 AN00023 2 470E-155 ST000121 AN00023 2 470E-155 ST000121 AN00023 1 830E-131 ST000121 AN00023 1 830E-131 ST000121 AN00023 1 840E-131 ST000121 AN00023 1 840E-131 ST000121 AN00023 1 840E-131 ST000121 AN00023 1 840E-131 ST000121 AN00023 1 270E-127 ST000121 AN00023 1 270E-127 ST000121 AN00023 1 270E-127 ST000121 AN00023 1 270E-127 ST000121 AN00023 3 670E-169 ST000121 AN00023 3 630E-151 ST000121 AN00023 670E-160 ST000121 AN00023 670E-16	Blood Analysis Type:LCMS Ion mode:NEG Experimental Conditions (tactors) 1070:E165 Tissue Epidomal white adipose (atil) Castrocommis doop: 161 Tissue Epidomal white adipose (atil) Castrocommis doop: 121 Tissue Epidomal white adipose (atil) Castrocommis sono: 121 Tissue Epidoma white adipose (a	ATIVE (5 (Saloida 55 (Saloida 56 (Saloida		Giuconic acid [P] Hypoxanthine [P] Allantoin [P] Undine [P] Undine [P] Gitric acid [P] Gitric acid [P] Uric acid [P] Uric acid [P] Bancoic acid [P] Pantothenic acid [P] Plantothenic acid [P] Oleic acid [P] Indoxyl sulfate [P] Hippuric acid [P]	[P]	15 [Data] 14 [Data] 13 [Data] 14 [Data] 13 [Data] 14 [Data] 13 [Data] 14 [Data] 15 [Data] 12 [Data] 12 [Data] 12 [Data] 11 [Data] 11 [Data] 11 [Data] 11 [Data] 10 [Data] 10 [Data]	34.32 Fich actus 32.80 Monosaccharides 33.81 Purines 53.18 Purines 52.44 Purines 34.11 Ureas 26.52 Pyrimidines 30.02 Alcohols and polyols 37.70 TCA acids 29.41 Fatty acids 28.43 Purines 28.41 Organic phosphoric acids 29.41 Aloracids and peptides 39.99 Purines 26.41 Organic phosphoric acids 19.46 Monosaccharides 37.94 Benzoic acids and peptides 38.63 Pyrroline carboxylic acids 41.57 Fatty acids 41.57 Fatty acids 45.64 Indoles 55.68 Alcohols and polyols 76.29 Benzamides	TCA acids Sugar acids Hypoxanthines Vanthines Ureides Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines Purine rNDP Organic phosphoric acids Sugar acids Benzoic acids Amino acids Pyrroline carboxylic acids Unsaturated FA Indoles Quinic acids Hippuric acids
ANOVA results for Chromatography to Refmet Name Giutathione FAD ADP-glucose ADP-glucose ADP-glucose ADP-glucose ADP-glucose ADP-glucose ANDP+ Seranyi Dynosphate 4-Hydroybenzole acid 5-Phosphogluconic acid 4-Hydroybenzole acid 5-Phosphogluconic acid ANDP+ ANDPH ANDPH Displayers Creatine Phosphoglucose DIDP-N acidylucosamine Taurine Sultamic acid Stutamic acid Citautine	all metabolites where p-value <=0.05 (Source pe:HILIC) Study_id Anaysis_ut Anaysis_u	Blood Analysis Type:LCMS Ion mode:NEG TorR Experimental Conditions (tectors) TorR	ATIVE as (skeleta (s (skeleta)		Gluconic acid [P] Hypoxanthine [P] Allantoin [P] Myo-inositol [P] Citric acid [P] Stearic acid [P] Diric acid [P] ADP [P] sn-Glycero-3-phosphate Glyceric acid [P] Pantothenic acid [P] Pantothenic acid [P] Oleic acid [P] Indoxyl sulfate [P] Quinic acid [P] Hippuric acid [P] Sorbitol [P]	(P)	13 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 14 [Data] 14 [Data] 13 [Data] 13 [Data] 12 [Data] 12 [Data] 12 [Data] 12 [Data] 12 [Data] 11 [Data] 12 [Data] 13 [Data] 14 [Data] 15 [Data] 12 [Data] 11 [Data] 11 [Data] 11 [Data] 10 [Data] 10 [Data] 10 [Data] 10 [Data]	34.32 FLCA BCUS 32.80 Monosaccharides 53.18 Purines 53.18 Purines 53.18 Purines 34.41 Ureas 26.52 Pyrimidines 30.02 Alcohols and polyols 37.70 TCA acids 29.41 Fatty acids 31.45 Purines 30.99 Purines 30.99 Purines 37.41 Graphic acids 19.46 Monosaccharides 37.94 Benzoic acids 42.07 Amino acids and peptides 38.63 Pyrroline carboxylic acids 41.57 Fatty acids 46.04 Indoles 55.68 Alcohols and polyols 78.29 Benzamides 54.40 Monosaccharides 39.18 Short-chain acids	TCA acids Sugar acids Hypoxanthines Ureides Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines Purine rNDP Organic phosphoric acids Benzoic acids Benzoic acids Hyrroline carboxylic acids Unsaturated FA Indoles Quinic acids Hippuric acids Sugar alcohols Short-chain acids
ANOVA results for Chromatography to Refmet Name Gluiathione AD ADP-glucose ATP ADP-glucose ATP ANDP-4 Seranyl psycphosphate 4-Hydroxybenzofe acid Seranyl psycphosphate 4-Hydroxybenzofe acid Seranyl psycphosphate 4-Hydroxybenzofe acid DP-glucose DDP-glucose DDP-glucose DDP-glucose DDP-glucose BDP	all metabolites where p-value <=0.05 (Source pe:HILIC) Study_d Anatysi, d Anatysi, d ANOVA ST000121 AN00023 8.370E-109 ST000121 AN00023 2.470E-153 ST000121 AN00023 2.470E-153 ST000121 AN00023 2.430E-143 ST000121 AN00023 2.430E-143 ST000121 AN00023 2.430E-143 ST000121 AN00023 2.470E-153 ST000121 AN00023 2.470E-153 ST000121 AN00023 2.470E-153 ST000121 AN00023 2.470E-123 ST000121 AN00023 2.470E-123 ST000121 AN00023 2.470E-123 ST000121 AN00023 2.470E-123 ST000121 AN00023 2.470E-123 ST000121 AN00023 2.470E-123 ST000121 AN00023 2.450E-123 ST000121 AN00023 2.450E-153 ST000121	Blood Analysis Type:LCMS Ion mode:NEG Experimental Conditions (factors) 1070E Experimental Conditions (factors) 1070E160 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 420E 150 Tissue Epiddymal white adpose (ht) Castrocommu 5 50E126 Tissue Epiddymal white adpose (ht) Castrocommu 5 50E126 Tissue Epiddymal white adpose (ht) Castrocommu 5 50E126 Tissue Epiddymal white adpose (ht) Castrocommu 5 30E02 Tissue Epiddymal white adpose (ht) Castrocommu 5 30E02 Tissue Epiddymal white adpose (ht) Castrocommu 3 30E121 Tissue Epiddymal white adpose (ht) Castrocommu 3 30E121 Tissue Epiddymal white adpose (ht) Castrocommu 3 30E111 Tissue Epiddymal white adpose (ht)	ATIVE is (skalata, is (skalata		Giuconic acid [P] Hypoxanthine [P] Allantoin [P] Allantoin [P] Myo-inositol [P] Citric acid [P] Unc acid [P] Unc acid [P] Unc acid [P] Benzoic acid [P] Pantothenic acid [P] Partothenic acid [P] Phyroglutamic acid [P] Indoxyl sulfate [P] Citric acid [P] Indoxyl sulfate [P] Giutic acid [P] Sorbitol [P] Phosphoenologyuvic acid 2-Hydroxyglutanic acid	[P] [P]	15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 15 [Data] 14 [Data] 14 [Data] 13 [Data] 14 [Data] 13 [Data] 14 [Data] 15 [Data] 16 [Data] 17 [Data] 18 [Data] 12 [Data] 11 [Data] 11 [Data] 11 [Data] 10 [Data] 10 [Data] 10 [Data] 10 [Data] 10 [Data]	34.32 TCA actos 32.80 Monosaccharides 53.18 Purines 53.14 Urines 43.41 Ureas 26.52 Pyrimidines 30.02 Alcohols and polyols 37.70 TCA acids 29.41 Fatty acids 31.45 Purines 30.99 Purines 26.41 Organic phosphoric acids 19.46 Monosaccharides 37.94 Benzoic acids 42.07 Amino acids and peptides 38.63 Pyrroline carboxylic acids 41.57 Fatty acids 46.04 Indoles 55.68 Alcohols and polyols 78.29 Benzamides 54.40 Monosaccharides 39.18 Short-chain acids 20.59 Fatty acids 30.19 Monosaccharides	TCA acids Sugar acids Hypoxanthines Vireldes Pyrimidine ribonucleosides Inositols TCA acids Saturated FA Xanthines Purine rNDP Organic phosphoric acids Benzoic acids Amino acids Pyrroline carboxylic acids Unsaturated FA Indoles Quinic acids Hippuric acids Sugar alcohols Short-chain acids Hydroxy FA Hexoses

In this example, all studies with blood as the sample source using LCMS and HILIC chromatography in negative ion mode are selected

Analysis Type:	LCMS V	MS Ion Mode:	NEGATIVE ~		1			
Chromatography Type:	~			1	Amino acid/peptides			
Species:	Human (227)	✓ Sp. class:		 3 	Fatty acyls			
Disease:		v		4	Terpenoids			
Sample source:				- P	Phospholipids			
RefMet name:	Contains v	(case insensi	itive)	7	Sterols			
Metabolite superclass:		(····· - /	⁸	Nucleic acids			
metabolite superclass.				1	0 Flavonoids			
Human pathway:	Citric Acid Cycle		~	1	1 Others			
	Re	efmet Name [Pathways] alic acid [P]	Stuc 107	lies [Da [Dat	ata Details] a]	RSD 32.79	Main Class TCA acids	Sub Class TCA acids
						202		
	M	alic acid [P]	107	[Dat	a]	32.79	TCA acids	TCA acids
	Ci	itric acid [P]	84	[Data]	30.89	TCA acids	TCA acids
	S	Succinic acid [P]		[Data]	32.84	TCA acids	TCA acids
	A	DP [P]	62	[Data]	35.86	Purines	Purine rNDP
	Fi	Fumaric acid[P]61[Pyruvic acid[P]60[[Data]	35.13	TCA acids	TCA acids
	P			[Data]	37.81	Short-chain acids	Short-chain acids
	O.	xoglutaric acid [P]	60	[Data]	49.35	TCA acids	TCA acids
	A	TP [P]	52	[Data]	41.12	Purines	Purine rNTP
	N.	AD+ [P]	40	[Data]	34.97	Nicotinamides	Nicotinamide dinucleotides
	N, F/	AD+ [P] AD [P]	40 35	[Data [Data]	34.97 31.58	Nicotinamides Flavins	Nicotinamide dinucleotides Flavin nucleotides
	N, F/ N/	AD+ [P] AD [P] ADH [P]	40 35 34	[Data [Data [Data]]]	34.97 31.58 36.65	Nicotinamides Flavins Nicotinamides	Nicotinamide dinucleotides Flavin nucleotides Nicotinamide dinucleotides
	N Fa Na cis	AD+ [P] AD [P] ADH [P] s-Aconitic acid [P]	40 35 34 30	[Data [Data [Data [Data]]]]	34.97 31.58 36.65 39.01	Nicotinamides Flavins Nicotinamides TCA acids	Nicotinamide dinucleotides Flavin nucleotides Nicotinamide dinucleotides TCA acids
	N F N cis O	AD+ [P] AD [P] ADH [P] s-Aconitic acid [P] xaloacetic acid [P]	40 35 34 30 26	[Data [Data [Data [Data] [Data]]]]]	34.97 31.58 36.65 39.01 25.02	Nicotinamides Flavins Nicotinamides TCA acids TCA acids	Nicotinamide dinucleotides Flavin nucleotides Nicotinamide dinucleotides TCA acids TCA acids
	N F N Cit O C G	AD+ [P] AD [P] ADH [P] s-Aconitic acid [P] xaloacetic acid [P] DP [P]	40 35 34 30 26 25	[Data [Data [Data [Data [Data] [Data]]]]]	34.97 31.58 36.65 39.01 25.02 40.99	Nicotinamides Flavins Nicotinamides TCA acids TCA acids Purines	Nicotinamide dinucleotides Flavin nucleotides Nicotinamide dinucleotides TCA acids TCA acids Purine rNDP
	N F N Ci: O: GI AC	AD+ [P] AD [P] ADH [P] s-Aconitic acid [P] xaloacetic acid [P] DP [P] cetyl-CoA [P]	40 35 34 30 26 25 22	[Data [Data [Data [Data [Data [Data		34.97 31.58 36.65 39.01 25.02 40.99 37.03	Nicotinamides Flavins Nicotinamides TCA acids TCA acids Purines Fatty esters	Nicotinamide dinucleotides Flavin nucleotides Nicotinamide dinucleotides TCA acids TCA acids Purine rNDP Acyl CoAs
	N F N Ci: O C G A G G G G	AD+ [P] AD [P] ADH [P] s-Aconitic acid [P] xaloacetic acid [P] DP [P] cetyl-CoA [P] TP [P]	40 35 34 30 26 25 22 17	[Data [Data [Data [Data [Data [Data [Data [Data		34.97 31.58 36.65 39.01 25.02 40.99 37.03 29.44	Nicotinamides Flavins Nicotinamides TCA acids TCA acids Purines Fatty esters Purines	Nicotinamide dinucleotides Flavin nucleotides Nicotinamide dinucleotides TCA acids TCA acids Purine rNDP Acyl CoAs Purine rNTP
	N F O. G Ac G B B	AD+ [P] AD [P] ADH [P] s-Aconitic acid [P] xaloacetic acid [P] DP [P] cetyl-CoA [P] TP [P] iotin [P]	40 35 34 30 26 25 22 17 11	[Data [Data [Data [Data [Data [Data [Data [Data]		34.97 31.58 36.65 39.01 25.02 40.99 37.03 29.44 20.08	 Nicotinamides Flavins Nicotinamides TCA acids TCA acids Purines Fatty esters Purines Heterocyclic compounds 	Nicotinamide dinucleotides Flavin nucleotides Nicotinamide dinucleotides TCA acids TCA acids Purine rNDP Acyl CoAs Purine rNTP Biotin

3 [Data]

3 [Data]

69.53

80.85

Fatty amides

Pyrimidines

Primary amides

Thiamine phosphates

In this example, human studies using LCMS in negative ion mode for Citric acid cycle metabolites are selected

Lipoamide [P]

Thiamine diphosphate [P]

Analysis Type:		MS ION Mode:	NEGATIVE V					
Chromatography Type:	~			1 Amino acid/peptides				
Species:	Human (227) 🔹 🗸	Sp. class:		MetStat: Search parameters: Analysis Type:	LCMS Ion mode:NEGATIVE Spec	cies:Hu	man Most significa	ant ANC
Disease:	~			Pofmet Name (Pathways)	Studios (Data Dotails)	PSD	Main Class	Sub
0					63 [Data]	40.01	Glycerophosphoethanolamines	LPE
Sample source:	~			PI 38:4 [P]	49 [Data]	34.81	Glycerophosphoinositols	PI
RefMet name:	Contains x	(case insensi	itivo)	PI 36:2 [P]	48 [Data]	37.79	Glycerophosphoinositols	PI
Reimet name.				PI 38:5 [P]	43 [Data]	36.94	Glycerophosphoinositols	PI
Metabolite superclass:	Phospholipids ~			PE 36:2 [P]	42 [Data]	40.28	Glycerophosphoethanolamines	PE
•	• •			PI 36:4 [P]	42 [Data]	36.92	Glycerophosphoinositols	PI
Human pathway:			~	PC 34:2 [P]	40 [Data]	30.16	Glycerophosphocholines	PC
				PG 36:2 [P]	40 [Data]	40.47	Glycerophosphoglycerols	PG
Records to display:	All 🗸	Generate	Reset	LPE 18:1 [P]	40 [Data]	48.15	Glycerophosphoethanolamines	LPI
, [-				PE 30:3 [P]	39 [Data]	46.77	Glycerophosphoethanolamines	PE
				LPE 20.4 [P]	39 [Data]	40.00	Glycerophosphoethanolamines	
				F⊑ 34.1 [F] DI 38-3 [D]	38 [Data]	42.33	Glycerophosphoinositols	
				PC 32:2 [P]	38 [Data]	35.95	Glycerophosphocholines	PC
				LPF 16:0 [P]	38 [Data]	43.83	Glycerophosphoethanolamines	I P
				PI 34:2 [P]	38 [Data]	38.63	Glycerophosphoinositols	PI
				PC 32:1 [P]	38 [Data]	38.07	Glycerophosphocholines	PC
				PE 36:1 [P]	38 [Data]	39.51	Glycerophosphoethanolamines	PE
				PC 36:3 [P]	37 [Data]	25.61	Glycerophosphocholines	PC
				PC 32:0 [P]	37 [Data]	23.45	Glycerophosphocholines	PC
				PE 38:4 [P]	37 [Data]	42.16	Glycerophosphoethanolamines	PE
				PC 38:4 [P]	37 [Data]	31.52	Glycerophosphocholines	PC
				PC 38:5 [P]	37 [Data]	27.02	Glycerophosphocholines	PC
				PE 34:2 [P]	36 [Data]	45.35	Glycerophosphoethanolamines	PE
				PC 36:1 [P]	36 [Data]	25.44	Glycerophosphocholines	PC
				PC 36:2 [P]	36 [Data]	28.93	Glycerophosphocholines	PC
				PE 38.6 [P]	36 [Data]	47.87	Glycerophosphoethanolamines	PE
				PC 38:2 [P]	35 [Data]	25.95	Glycerophosphocholines	PC
				PC 38:3 [P]	35 [Data]	31.71	Glycerophosphocholines	PC
				PC 33.1 [P]	35 [Data]	31.10	Glycerophosphocholines	
				LPE 18.2 [P]	35 [Data]	39.54	Glycerophosphoetnanolamines	LP DC
				PL40:5 [P]	35 [Data]	42.30	Glycerophosphoinositols	
				PI 34:1 [P]	35 [Data]	40.51	Glycerophosphoinositols	PI
				PL36:1 [P]	35 [Data]	35.54	Glycerophosphoinositols	PL
				LPE 22:6 [P]	34 [Data]	44.92	Glycerophosphoethanolamines	LP
				PC 40:6 [P]	34 [Data]	33.55	Glycerophosphocholines	PC
				PC 34:1 [P]	34 [Data]	27.20	Glycerophosphocholines	PC
				PC 40:5 [P]	34 [Data]	32.55	Glycerophosphocholines	PC
				PC 36:4 [P]	34 [Data]	31.47	Glycerophosphocholines	PC
				PS 38:4 [P]	34 [Data]	51.02	Glycerophosphoserines	PS
				PE 32:1 [P]	34 [Data]	62.88	Glycerophosphoethanolamines	P

In this example, human studies using LCMS in negative ion mode containing Phospholipids are selected

NMDR:Study-level analysis options

Study summary page

Summ	nary of all studies							
Click the Please re download	Study ID to access detailed study information ifer to our Data:FAQ and About:How to Cite led.	; download the mv pages for informa	vTab (metadata and process tion regarding how to cite th	sed data) e Metabo	text file; and lomics Worki	access bench a	the Statis	tics Toolbox for that study. Its that you have uploaded or
Showing pa	study Title	Showing results	Institute	Analysis	(*: Cont	ains unta Version	samples	a) Results per page: 50 V
\$T002058	Manual umor metabolomics	14 Mus musculus	▲ University of Colorado	∎. LC-MS	1	1	32	(* : Contains raw data) Uploaded data (267.1M)*
ST002059	4T1 and SkM cells	Homo sapiens	Anschutz Medical Campus University of Colorado	LC-MS	2022-02-14	1	12	(Data format:mzXML) Uploaded data (65.5M)*
ST002067	Time-Resolved Metabolomics of a Mouse Model of Ovarian High-Grade Serous Carcinoma (LC-MS)	Mus musculus	Georgia Institute of Technology	LC-MS*	2022-02-14	1	356	(Data format:m2XML) Uploaded data (143.9G)* (Data format:raw(Thermo))
ST002068	Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy	Mus musculus	Weill Cornell Medicine	LC-MS	2022-02-14	1	32	Uploaded data (609M)* (Data format:mzXML)
ST002070	Lipidomic Comparison of 2D and 3D Colon Cancer Cell Culture Models	Homo sapiens	The Ohio State University	LC-MS	2022-02-14	1	59	Uploaded data (17.1G)* (Data format:d)
ST002071	Metabolic profiling of mouse CD27+ and CD27- gammadelta T cells	Mus musculus	University of Louisville	LC-MS	2022-02-14	1	11	Uploaded data (1.2G)* (Data format:raw(Thermo))
ST002044	An observational study of cardiovascular patients in India	Homo sapiens	Translational Health Science And Technology Institute (THSTI)	LC-MS#	2022-02-08	1	286	Uploaded data (10.8G)* (Data format:mzML)
ST001950	Lipidome Alterations Following Mild Traumatic Brain Injury.	Rattus norvegicus	Georgia Institute of Technology	LC-MS	2022-02-07	1	114	Uploaded data (24.7G)* (Data format:mzML)
ST002060	Pollen metabolomics using Arabidopsis thaliana: Comparison of pollen at mature, hydration and germination stage	Arabidopsis thaliana	University of Illinois, Urbana-Champaign	LC-MS*	2022-02-07	1	72	Uploaded data (1.2G)* (Data format:mzML)
ST002061	Glutamine flux in macrophages treated with stable-isotope labeled analog 4 mM (U-13C5) glutamine	Mus musculus	Shanghai Jiao Tong University affiliated Renji Hospital	LC-MS	2022-02-07	1	16	Uploaded data (251.3M)* (Data format:mzXML)
ST001926	Modular evolution of the Drosophila metabolome	Drosophila melanogaster	University of Washington	LC-MS*	2022-02-02	1	261	Uploaded data (5.2G)* (Data format:mzXML)
ST002019	TIPs Metabolomics (blood)	Homo sapiens	Vanderbilt University Medical Center	MS	2022-02-02	1	70	Not available
ST002064	Metabolic impact of anticancer drugs Pd2Spermine and Cisplatin on the polar extracts of brain from healthy mice (part 1)	Mus musculus	University of Aveiro	NMR*	2022-02-02	1	44	Not available
ST002065	Metabolic impact of anticancer drugs Pd2Spermine and Cisplatin on the nonpolar extracts of brain from healthy mice (part 2)	Mus musculus	University of Aveiro	NMR*	2022-02-02	1	44	Not available
ST002056	Integrated Multilayer Omics Reveals the Genomic, Proteomic and Metabolic Influences of the Histidyl Dipeptides on Heart	Mus musculus	University of Louisville	GC-MS	2022-01-31	1	8	Not available
ST002062	Endophytic bacteria are key players in the modulation of the secondary metabolome of Lithospermum officinale L.	Lithospermum officinale	Aristotle University of Thessaloniki	LC-MS#	2022-01-31	1	45	Uploaded data (1.6G)* (Data format:raw(Thermo))
ST001680	Metabolome of NAFLD in high fat diet mouse model	Mus musculus	Weill Cornell Medicine	LC-MS	2022-01-27	1	96	Uploaded data (40.3G)* (Data format:d)
ST001713	Effects of different planting densities on the metabolism of Panax notoginseng	Panax notoginseng	Yunnan Agricultural University	GC-MS#	2022-01-25	1	20	Uploaded data (469.4M)* (Data format:d)
ST002057	Distinct Human Hepatocyte Lipidomics Profiles for Nonalcoholic Steatohepatitis and In Vitro- Induced Steatosis	Homo sapiens	Monash Institute of Pharmaceutical Sciences	LC-MS	2022-01-25	1	103	Uploaded data (18.5G)* (Data format:raw(Thermo))

Study detail page

Summary	v of study ST001140					
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000761. The data can be accessed directly via it's Project DOI: 10.21228/M89Q32 년 This work is supported by NIH grant, U2C- DK119886. See: https://www.metabolomicsworkbench.org/about/howtocite.php 년						
Perform stati	stical analysis Show all samples Show named metabolites Download named metabolite data					
Study ID	ST001140					
Study Title	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure					
Study Summary	Glucocorticoids (GCs) are widely used in veterinary and human medicine. Chromic endogenous or iatrogenic GC overexposure impairs metabolic function and can esult in diverse side-effects, including Cushing's syndrome. This study examines the effects of experimentally induced short-term and long-term GC excess (hduced by prednisolone and tetracosactide, respectively) on the plasma lipidome of Beale dogs. Both, long- and short-term GC resulted in significant changes of the plasma lipidome.					
Institute	National University of Singapore;University of Zurich					
Department	Singapore Lipidomics Incubator (SLING);Vetsuisse Faculty, University of Zurich					
Laboratory	Singapore Lipidomics Incubator (SLING), National University of Singapore					

Map study metabolites to HMDB and KEGG pathways
 Map study metabolites to pathways with ratio/t-test data

Analysis tools applied to the data for the selected NMDR study A study may have more than one analysis (dataset)

Metabolite classification

Pie chart of metabolite super classes Pie chart of metabolite main classes Pie chart of metabolite sub classes

Normalization and averaging

Show Metabolite averages per experimental factor Perform normalization on data Create Relative log abundance plots

Univariate analysis

Perform multi-condition dot plot analysis Perform Volcano plot analysis Perform ANOVA analysis and class enrichment analysis MetENP analysis

Clustering and correlation

Perform hierarchical or heatmap cluster analysis Perform Clustered correlation analysis Perform Network analysis on correlated metabolites (mapped to classification) Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

Perform Principal component analysis Perform Linear discriminant analysis Perform Partial least-squares discriminant analysis (PLS-DA)

Classification and feature analysis

Perform OPLS-DA and VIP projection Random Forest and VIP projection

Mapping metabolites to human biochemical pathways Map study metabolites to HMDB and KEGG pathways Map study metabolites to pathways with ratio/t-test data

Statistics Toolbox for Study: ST001140

Title: Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure

Select a dataset:

Run analyses on data in Study ST001140 Dataset: Phospholipids, Chol. esters and Diacylglycerols

Metabolite classes (all analyses combined)

- Pie chart of metabolite super classes
 Pie chart of metabolite main classes
- Pie chart of metabolite sub classes

Normalization and averaging

Perform sample normalization / Show metabolite averages / Run cluster analysis
 Perform analyte scaling on data
 Create Relative log abundance plots

Univariate analysis

- Perform multi-condition dot plot analysis
- Perform Volcano plot analysis
- Perform ANOVA analysis

Clustering and correlation

- Perform hierarchial or heatmap cluster analysis
- Perform Clustered correlation analysis
- Perform Network analysis on correlated metabolites (mapped to classification)
- Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

- Perform Principal component analysis
- Perform Linear discriminant analysis
- Perform Partial least-squares discriminant analysis (PLS-DA)

Classification and feature analysis

```
    Perform OPLS-DA and VIP projection
```

Random Forest and VIP projection

MetaBatch Omic Browser (MD Anderson Cancer Center)

(Clustered Heat Maps, PCA+, UMAP, box plot, violin plot, and other visualizations)

• Load this study ₪ • Load this analysis (AN001870) ₪

MetENP: Metabolite enrichment and species-specific pathway annotation

MetENPWeb analysis
 MetENP R package

 MetENP tutorial

Mapping metabolites to human biochemical pathways

Map study metabolites to HMDB and KEGG pathways
Map study metabolites to pathways with ratio/t-test data

Study-specific analysis toolbox

Pie chart by Metabolite super class for all studies

Volcano Plot

log2 Fold Change

Study: ST000001 Analysis ID:AN000001 (GCMS positive ion mode)

Antipod Antipo

Data matrix

Fatb Induction Experiment (FatBIE)

P(10(38:4)

PI(34:1) PI(30:2)

PC(36.2)

PI(38:5)

pval -

P126-31

0+C+8H9414181723.0

OrCent18 122.01

GioCarlo . Cede(0.2/10.0) PE(34:1)

CE(24.4

LPC(20.5)

GioCer(d18:1/25:0)

B18418 Pase(40:0)

PE(38:0) CE(20.5) Glycerophospholipids(51301

Organic acids(33060)

Glycerolipids(26297) Fatty Acyts(20131) Sphingolipids(11482)

Nucleic acids(10812) Carbohydrates(7944) Organoheterocyclic

Sterol Lipids(7248) Benzenoids(4858)

Organic oxygen com Organic nitrogen compounds(19)

Polyketides(1830)

Prenol Lipids(1672) Unassigned(816) Other(979)

Class Enrichment by Kolmorogov-Smirnov test

(View P-value weighted Class Enrichment)

(View Unweighted Class Enrichment)

(View Class Enrichment by hypergeometric distribution)

10 12 14 16

5

10

8 P value(x-axis): Calculated by KS test and converted to -log10(P)

PLS-DA Score Plot (auto)

Component1(35.4%) Cumulative Proportion of Variance Explained = 47.7%

A 116151

A 115152 A 115472 A removal 1616605177 A 115167

A 196218 A 196218 196231

-5

-10

HexCe

Sphingoid base 1-P

LPC

O-PO

Statistics Toolbox for Study: ST001140

Title: Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure

Select a dataset: Phospholipids, Chol. esters and Diacylglycerols 🗸

Run analyses on data in Study ST001140 Dataset: Phospholipids, Chol. esters and Diacylglycerols

Metabolite classes (all analyses combined)

- · Pie chart of metabolite super classes
- · Pie chart of metabolite main classes
- Pie chart of metabolite sub classes

Normalization and averaging

- · Perform sample normalization / Show metabolite averages / Run cluster analysis
- Perform analyte scaling on data
- Create Relative log abundance plots

Univariate analysis

- · Perform multi-condition dot plot analysis
- Perform Volcano plot analysis
- Perform ANOVA analysis

Clustering and correlation

- Perform hierarchial or heatmap cluster analysis
- Perform Clustered correlation analysis
- Perform Network analysis on correlated metabolites (mapped to classification)
- Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

- Perform Principal component analysis
- Perform Linear discriminant analysis
- Perform Partial least-squares discriminant analysis (PLS-DA)

Classification and feature analysis

Perform OPLS-DA and VIP projection

Random Forest and VIP projection

MetaBatch Omic Browser (MD Anderson Cancer Center)

Mapping metabolites to human biochemical pathways Map study metabolites to HMDB and KEGG pathways

• Map study metabolites to pathways with ratio/t-test data

(Clustered Heat Maps, PCA+, UMAP, box plot, violin plot, and other visualizations)

• Load this study 🗗

• Load this analysis (AN001870) 🗗

MetENP: Metabolite enrichment and species-specific pathway annotation

MetENPWeb analysis

• MetENP R package 🖗

MetENP tutorial

Pie-chart of metabolite super classes detected in a study

Metabolite names are mapped to RefMet which is linked to a chemical classification system

Pie-chart of metabolite sub classes detected in a study

Pie-chart of metabolite sub classes detected in a study Restrict to a selected super class

Normalization and averaging: Abundance plots

Normalization and averaging

- Perform sample normalization / Show metabolite averages / Run cluster analysis
- Perform analyte scaling on data
- Create Relative log abundance plots

MS Analysis Type Map Study ID Mode Study Title Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Phospholipids, Chol. esters and Run ST001140 Within groups V Diacylglycerols Exposure Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Run ST001140 Within groups ~ Sphingolipids Exposure Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Run ST001140 Within groups ~ Triacylglycerols Exposure

Relative log Abundance plots

Choose mode (within or across sample groups)

Volcano plot analysis tool

Most tools contain a form where the user selects appropriate experimental groups and analysis parameters prior to running the program

In this case, samples before and after Prednisolone treatment are compared. This study contains 4 analyses (different metabolite classes) and all data will be combined. A p-value cutoff of 0.5 and fold-change cutoff of 1.5 are selected for the volcano plot analysis step. Metabolites will be classified by sub class (as opposed to main class). No sample normalization will be performed prior to analysis.

Analyses for this study:

Triacylglycerols Sphingolipids Phospholipids, Cholesterol esters and Diacylglycerols Spingosine-1-phosphates

Volcano plot analysis results

Volcano plot analysis results (sorted by t-test p-value)

Metabolite sub classes (mean values)

Individual metabolites (sorted by p-value)

Table of results grouped by metabolite class (using most significant analytes per class)						
Metabolite class	log2 Fold Change	-log10(P-value)	FDR-adjusted P-value(BH)	# of metabolites per class		
LPC	-1.160	3.38	4.93e-3	-1(21)		
PC	-0.719	2.65	3.22e-2	-10(37)		
PI	-1.188	3.79	8.57e-3	-12(12)		
TAG	-1.414	1.69	8.92e-2	-2(25)		
Cer	1.157	2.92	1.75e-2	2(16)		
Chol. esters	1.493	2.60	7.67e-2	2(17)		
HexCer	0.961	3.90	6.47e-3	10(10)		
LPC	1.613	1.74	8.65e-2	2(21)		
O-PC	0.864	2.05	4.97e-2	1(26)		
O-PE	0.768	1.89	6.25e-2	1(10)		
PE	1.124	2.21	5.06e-2	4(12)		
Sphingoid base 1-P	0.812	2.22	3.83e-2	2(5)		

12 out of 12 PI's were significantly downregulated

4 out of 12 PE's were significantly upregulated

	List of significant metabolites (pvalue <=0.05 and fold-change >=1.5)									
Metabolite	log2 Fold Change	t-Test P-value	FDR-adjusted P-value(BH)	Main class	Sub class					
GlcCer(d18:1/23:0)	1.124	2.16e-6	3.09e-4	Glycosphingolipids	HexCer					
GlcCer(d18:1/16:0)	0.974	2.51e-6	3.09e-4	Glycosphingolipids	HexCer					
PI(36:4)	-1.374	6.28e-6	4.01e-4	Glycerophosphoinositols	PI					
PI(38:4)	-1.229	6.51e-6	4.01e-4	Glycerophosphoinositols	PI					
GlcCer(d18:1/22:0)	1.029	3.01e-5	1.29e-3	Glycosphingolipids	HexCer					
PI(38:5)	-1.481	3.15e-5	1.29e-3	Glycerophosphoinositols	PI					
PI(36:3)	-1.401	7.29e-5	2.33e-3	Glycerophosphoinositols	PI					
GlcCer(d18:1/24:1)	1.040	8.03e-5	2.33e-3	Glycosphingolipids	HexCer					
GlcCer(d18:1/24:0)	0.953	8.57e-5	2.33e-3	Glycosphingolipids	HexCer					
PI(36:2)	-0.912	9.46e-5	2.33e-3	Glycerophosphoinositols	PI					
PI(34:1)	-1.132	1.21e-4	2.71e-3	Glycerophosphoinositols	PI					
CE(24:4)	1.502	1.56e-4	3.03e-3	Sterol esters	Chol. esters					
PI(40:5)	-1.291	1.60e-4	3.03e-3	Glycerophosphoinositols	PI					
PC(36:3)	-0.651	1.80e-4	3.16e-3	Glycerophosphocholines	PC					
PC(35:2)	-0.755	2.54e-4	3.94e-3	Glycerophosphocholines	PC					
PI(34:2)	-0.986	2.56e-4	3.94e-3	Glycerophosphoinositols	PI					
PI(40:4)	-1.075	3.03e-4	4.22e-3	Glycerophosphoinositols	PI					
Cer(d18:2/18:0)	1.436	3.09e-4	4.22e-3	Ceramides	Cer					
GlcCer(d18:1/18:0)	1.147	3.31e-4	4.28e-3	Glycosphingolipids	HexCer					
LPC(19:0)	-1.160	4.16e-4	4.93e-3	Glycerophosphocholines	LPC					
GlcCer(d18:1/20:0)	0.916	4.21e-4	4.93e-3	Glycosphingolipids	HexCer					
PE(34:1)	1.523	6.91e-4	7.72e-3	Glycerophosphoethanolamines	PE					
PI(32:1)	-1.079	8.47e-4	8.71e-3	Glycerophosphoinositols	PI					
GlcCer(d18:1/25:0)	0.816	8 500-4	8 710-3	Glycosphingolipids	HeyCer					

Volcano plot analysis results (click on icons)

Volcano plot

Class enrichment plot

Bubble plot of -log10 p-value vs fraction directional change

Barplot of significantly altered metabolite classes

ANOVA analysis tool

Most tools contain a form where the user selects appropriate experimental groups and analysis parameters prior to running the program

Univariate analysis

- Perform multi-condition dot plot analysis
- Perform Volcano plot analysis

Perform ANOVA analysis

ANOVA Setup				
Select Factor: SamplingTimePoint V				
Analysis: Phospholipids, Chol. esters and Diacylglycerols V				
P-value cutoff:	0.05			
Group by metabolite classification: Sub class v				
Maximum # of (most significant) metabolites per class to use in group calculation: $5 \sim$				
	Run ANOVA			

Choose experimental factor to analyze by ANOVA (in this case it is before and after drug treatment), analysis group, p-value cutoff and classification group.

Analyses for this study: Triacylglycerols

Sphingolipids Phospholipids, Cholesterol esters and Diacylglycerols

Spingosine-1-phosphates

ANOVA analysis tool: Results

Most tools contain a form where the user selects appropriate experimental groups and analysis parameters prior to running the program

Multi-condition dot-plot analysis

Useful for plotting time-course data or comparing multiple experimental conditions to controls

Univariate analysis

- Perform multi-condition dot plot analysis
- Perform Volcano plot analysis
- Perform ANOVA analysis

Example: Metabolite changes associated with methionine stress sensitivity of human breast cancer cells. Use 100uM Methionine group as control and compare 370uM Homocysteine groups at various timepoints.

Control(s)	Experimental factor		Test(s	
	Treatment:100uM Met Timepoint:0 hours (4)			
	Treatment:370uM Hcy Timepoint:2 hours (4)			
	Treatment:370uM Hcy Timepoint:4 hours (4)			
	Treatment:370uM Hcy Timepoint:8 hours (3)			
	Treatment:370uM Hcy Timepoint:12 hours (4)			
	Treatment:370uM Hcy Timepoint:24 hours (4)			
	Treatment:370uM Hcy Timepoint:48 hours (4)			
	Treatment:quality check Timepoint:quality check (3)			
x-axis labels: 2	nr_4hr_8hr_12hr_24hr_48hr	Show a single class:		
P-value cutoff:	0.05 · Fold-change cutoff: 1.2 · Sample no	rmalization: Mean ~		
Group by meta	bolite classification: Sub class # of individual met	abolites to display: 30	×.	
Maximum # of (most significant) metabolites per class to use in grou	p calculation: 5 ×		

Plots

Query builder GUI

Multi-condition dot-plot analysis results

All groups are being compared to the control group (100uM Methionine treatment)

Increasing time ->

Metabolite class Plot

Increasing time -> Individual metabolite Plot

Multi-condition dot-plot analysis

Useful for plotting time-course data or comparing multiple experimental conditions to controls

	Dot Plot analysis for Study ST000077							
Select one or more experimental factors for control and test groups. The members of each group should be DIFFERENT.								
Control(s)	Experimental factor							
	Treatment:100uM Met Timepoint:0 hours (4)							
	Treatment:370uM Hcy Timepoint:2 hours (4)							
	Treatment:370uM Hcy Timepoint:4 hours (4)							
	Treatment:370uM Hcy Timepoint:8 hours (3)							
	Treatment:370uM Hcy Timepoint:12 hours (4)							
	Treatment:370uM Hcy Timepoint:24 hours (4)							
	Treatment:370uM Hcy Timepoint:48 hours (4)							
	Treatment:quality check Timepoint:quality check (3)							
x-axis labels ?: 2	x-axis labels ?: 2hr_4hr_8hr_12hr_24hr_48hr Show a single class: TAG V							
P-value cutoff: 0.05 V Fold-change cutoff: 1.5 V Sample prmalization: None V								
Use: Submitted metabolite names V Maximum # of individual meta olites to display: 30 V								
Group by: Sub class 🗸 Maximum # of (most significant) meta folites per class to use in group calculation: 5 🗸								
Analysis: ESI/QTO	Analysis: ESI/QTOF positive ion mode V Combine data for all Alyses?: V Run Analysis							

Restrict to a single class (triacylglycerols)

No significant changes compared to control in the TAG class were observed at the 24hr timepoint, so that column is absent in the plot.

Cluster analysis tools

	'n					
Perform hierarchial or h	eatmap cluster analysi	s				
Borform Clustered corre	lation analysis					
Perform Clustered colu	auon analysis					
Perform Network analy	on correlated metab	olites (mapped	l to classificati	on)		
						
Perform Network analys	on correlated metable	blites (mapped	i to foid-chang	e)		
Jata for (Study ST001140) Analysis AN001871) /alues for each metabolite have been	scaled by dividing by the mean acre	oss all factors				
un Hierarchial cluster analysis on	this study Run Heatmap cluster	analysis on this stud	ly			
retabolite	F1 1 3232	F2 1 1491	0.5756	F4 0.7946		
Cer(d18:1/16:0)	0.9360	1 2680	0.6926	1.0354		
Cer(d18:1/18:0)	0.6867	0.9859	0.5171	1.9195		
Cer(d18:1/20:0)	1.1739	0.9578	0.4702	3542		
Cer(d18:1/22:0)	1.3841	1.0262	0.5037	0.949		
Der(d18:1/23:0)	1.1823	1.0882	0.5655	1.0739		
Cer(d18:1/24:0)	1.1411	1.0774	0.5541	1.1545		
Cer(d18:1/24:1)	0.8238	1.0613	0.7579	1.3952		
Cor(d18:1/25:0)	1.3044	0.9207	0.6363	1 0637		
561(010.1120.0)				1.0037		
Cer(d18:1/25:1)	0.9870	1.0916	0.5991	1.2960		
Cer(d18:1/25:1) Cer(d18:2/16:0)	0.9870 0.9557	1.0916	0.5991 1.0837	1.2960 0.8881		
Cer(d18:1/25:1) Cer(d18:2/16:0) Cer(d18:2/18:0) Cer(d18:2/18:0)	0.9870 0.9557 0.5583	1.0916 1.0655 1.4417	0.5991 1.0837 NA	1.2960 0.8881 NA		
Cer(18:125:1) Cer(18:125:1) Cer(18:2/16:0) Cer(18:2/18:0) Cer(18:2/22:0) Cer(18:2/22:0)	0.9870 0.9557 0.5583 1.3553 0.9520	1.0916 1.0655 1.4417 1.0771 1.2847	0.5991 1.0837 NA 0.6618 0.8033	1.2960 0.8881 NA 0.7618 0.8811		
Cer(d18: 1/25 1) Cer(d18: 2/16 0) Cer(d18: 2/18 0) Cer(d18: 2/22 0) Cer(d18: 2/23 0) Cer(d18: 2/23 0)	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327	0.5991 1.0837 NA 0.6618 0.8033 0.6736	1.2960 0.8881 NA 0.7618 0.8811 1.0994		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/20.0) Cer(d18.2/23.0) Cer(d18.2/24.0) Cer(d18.2/24.1)	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376 0.6456	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327 1.1770	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840	1.2560 0.8881 NA 0.7618 0.8811 1.0994 1.0526		
Par(d18:1/25:1) Par(d18:2/16:0) Par(d18:2/16:0) Par(d18:2/16:0) Par(d18:2/22:0) Par(d18:2/24:0) Par(d1	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376 0.9376 0.6456 0.7048	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327 1.1770 1.3701	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533	1.2960 0.8881 NA 0.7618 0.8811 1.0994 1.0526 1.1468		
Per(d18:1/25:1) Per(d18:2/16:0) Per(d18:2/16:0) Per(d18:2/16:0) Per(d18:2/22:0) Per(d18:2/22:0) Per(d18:2/24:0) Per(d18:2/24:0) Per(d18:2/24:1) SicCer(d18:1/16:0) SicCer(d18:1/16:1)	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376 0.6456 0.7048 0.7320	1.0916 1.0655 1.4417 1.2847 1.2327 1.1770 1.3701 1.2868	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996	1.2860 0.8881 NA 0.7618 0.8811 1.0994 1.0526 1.1468 1.2754		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/20.0) Cer(d18.2/23.0) Cer(d18.2/24.0) Cer(d18.2/24.1) Cer(d18.1/16.0) SicCer(d18.1/16.1) SicCer(d18.1/16.1)	0.9870 0.9557 0.5583 1.3553 0.9520 0.6456 0.7048 0.7320 0.6099	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327 1.1770 1.3701 1.2868 1.3018	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996 0.4579	1,2560 0,881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599		
Cer(d18:1/25:1) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/22:0) Cer(d18:2/24:0) Cer(d18:2/24:0) SileCer(d18:1/16:0) SileCer(d18:1/16:0) SileCer(d18:1/16:1) SileCer(d18:1/16:0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7 748 0 7 7320 0 6099 0 7235	1.0916 1.0655 1.4417 1.2771 1.2847 1.2327 1.1770 1.3701 1.2868 1.3018 1.3584	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996 0.4579 0.6325	1,2360 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/22.0) Cer(d18.2/24.0) Cer(d18.2/24.0) Cer(d18.1/16.0) SilcCer(d18.1/16.1) SilcCer(d18.1/16.1) SilcCer(d18.1/18.0) SilcCer(d18.1/22.0)	0.9870 0.9557 0.5583 0.9520 0.9376 0.6456 0.748 0.7320 0.6699 0.7235 0.7804	1.0916 1.0655 1.4417 1.2847 1.2327 1.1770 1.3701 1.2668 1.3018 1.3584 1.6101	0,5991 1,0837 NA 0,6618 0,8033 0,6736 1,1840 0,7533 0,6996 0,4579 0,6325 0,4553	1,2560 0,881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241		
Ser(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) SicCer(18.1) Ser(18.2) SicCer(18.1) Ser(18.2) SicCer(18.1) Ser(2.0) SicCer(18.1) Ser(2.0) SicCer(18.1) Ser(2.0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7748 0 7320 0 6099 0 7235 0 7804 0 7706	1,0916 1,0655 1,4417 1,2847 1,2327 1,1770 1,3701 1,2668 1,3018 1,3568 1,3018 1,3564 1,6101 1,5278	0,5991 1,0837 NA 0,6618 0,8033 0,6736 0,6736 0,6736 0,6596 0,4579 0,6325 0,4553 0,5807	1,2660 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241 1,0241 1,067		
Cer(d18:1/25:1) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/22:0) Cer(d18:2/24:0) Cer(d18:2/24:0) SiGCer(d18:1/16:0) SiGCer(d18:1/16:0) SiGCer(d18:1/16:1) SiGCer(d18:1/18:0) SiGCer(d18:1/12:0) SiGCer(d18:1/22:0) SiGCer(d18:1/23:0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7048 0 7235 0 6099 0 7235 0 7804 0 7066 0 7081	1 0916 1 0655 1 4417 1 2947 1 2327 1 3701 1 2668 1 3018 1 3584 1 6101 1 5278 1 5167	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996 0.4579 0.6325 0.4553 0.4553 0.5807 0.5867	1,2360 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241 1,0267 1,0069		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/22.0) Cer(d18.2/23.0) Cer(d18.2/24.1) SicCer(d18.1/16.0) SicCer(d18.1/16.1) OisCer(d18.1/16.1) OisCer(d18.1/16.1) OisCer(d18.1/20.0) SicCer(d18.1/22.0) SicCer(d18.1/22.0) SicCer(d18.1/23.0) SicCer(d18.1/24.1)	0 9870 0 9557 0 5583 1 3553 0 9520 0 8456 0 7048 0 7048 0 720 0 720 0 720 0 720 0 7804 0 7784 0 7784 0 7784 0 7784 0 7784	1,0916 1,0655 1,4417 1,2477 1,2327 1,1770 1,2701 1,2701 1,2868 1,3018 1,3018 1,3018 1,3584 1,6101 1,5278 1,5167 1,4048	0.5991 1.0337 NA 0.6518 0.8033 0.6736 0.6736 0.6736 0.4579 0.6325 0.4553 0.4553 0.5867 0.5867 0.7622	1 2360 0 8881 NA 0 7618 0 8811 1 0994 1 0526 1 1468 1 2754 1 6599 1 2584 1 0241 1 1067 1 10069 1 1354		
Ser(418.1/25.1) Cer(418.2/16.0) Cer(418.2/16.0) Cer(418.2/16.0) Cer(418.2/22.0) Cer(418.2/23.0) Cer(418.2/24.1) SileCer(418.1/16.0) SileCer(418.1/16.0) SileCer(418.1/16.0) SileCer(418.1/16.0) SileCer(418.1/10.0) SileCer(418.1/12.0) SileCer(418.1/12.0) SileCer(418.1/24.0) SileCer(418.1/24.0) SileCer(418.1/24.0) SileCer(418.1/25.0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 8376 0 6456 0 7048 0 7320 0 6099 0 7235 0 7804 0 7066 0 7881 0 6721 0 8215	1 0916 1 0655 1 4417 1 2847 1 2327 1 1770 1 3701 1 3701 1 368 1 3018 1 3018 1 3584 1 6101 1 5278 1 5167 1 4046 1 4817	0.5991 1.0837 NA 0.6518 0.8033 0.6736 1.1840 0.7533 0.6396 0.4579 0.6325 0.4553 0.5807 0.5807 0.5807 0.5807 0.5807 0.5807	1,2660 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,2554 1,2554 1,0241 1,0241 1,0257 1,0254 1,0241 1,0057		
Ser(418.1/25.1) Ser(418.2/16.0) Ser(418.2/16.0) Ser(418.2/16.0) Ser(418.2/22.0) Ser(418.2/24.0) Ser(418.2/24.1) SiGCer(418.1/16.0) SiGCer(418.1/16.0) SiGCer(418.1/16.1) SiGCer(418.1/16.0) SiGCer(418.1/16.0) SiGCer(418.1/12.0) SiGCer(418.1/23.0) SiGCer(418.1/24.0)	0 9870 0 9557 0 5583 1 3553 0 9552 0 9376 0 7326 0 748 0 7320 0 6099 0 7325 0 7804 0 7735 0 7804 0 7781 0 6721 0 6721 0 6721 0 8215 0 7.297	1 0916 1 0655 1 4417 1 2947 1 2327 1 1770 1 3701 1 2668 1 3018 1 3564 1 6101 1 55278 1 5167 1 4048 1 4917 1 2703	0,5991 1,0837 NA 0,6618 0,8033 0,6736 1,1840 0,7533 0,6996 0,4579 0,6325 0,4553 0,4553 0,5807 0,5867 0,7622 0,6211 NA	1,2360 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,0559 1,2584 1,0241 1,0241 1,067 1,0069 1,1354 0,9747 NA		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/23.0) Cer(d18.2/23.0) Cer(d18.2/24.1) SicCer(d18.1/16.0) SicCer(d18.1/16.0) SicCer(d18.1/16.1) OBIC-Cer(d18.1/16.1) SicCer(d18.1/20.0) SicCer(d18.1/22.0) SicCer(d18.1/22.0) SicCer(d18.1/24.0) SicCer(d18.1/24.1) SicCer(d18.1/24.0) SicCer(d18.1/24.0) SicCer(d18.1/24.0) SicCer(d18.1/24.0) SicCer(d18.1/24.0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 6456 0 7048 0 7048 0 7048 0 720 0 6099 0 7235 0 7804 0 7784 0 7786 0 7784 0 7786 0 6721 0 6272 0 7297 NA	1 0916 1 0655 1 4417 1 2847 1 2327 1 1770 1 3701 1 2868 1 3018 1 3018 1 3018 1 3526 1 5167 1 4048 1 4817 1 4048 1 4817 1 2703 NA	0,5991 1,0837 NA 0,6618 0,8033 0,6736 0,6736 0,4579 0,6325 0,4553 0,4553 0,4553 0,5807 0,5867 0,7622 0,6211 NA NA	1 2360 0 883 NA 0 7618 0 8811 1 0994 1 0526 1 1468 1 2754 1 6599 1 2584 1 0241 1 1067 1 10069 1 1354 0 9747 NA 1 4856		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/18.0) Cer(d18.2/23.0) Cer(d18.2/24.1) GlicCer(d18.1/16.0) GlicCer(d18.1/16.0) GlicCer(d18.1/18.0) GlicCer(d18.1/18.0) GlicCer(d18.1/20.0) GlicCer(d18.1/20.0) </td <td>0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7048 0 7320 0 6099 0 7235 0 7804 0 7066 0 7881 0 6721 0 8215 0 7297 NA</td> <td>1 0916 1 0655 1 .4417 1 .2847 1 .2327 1 .1770 1 .3701 1 .2668 1 .3018 1 .3584 1 .6101 1 .5278 1 .5167 1 .4048 1 .40</td> <td>0,5991 1,0837 NA 0,6618 0,8033 0,6736 1,1840 0,7533 0,6786 0,4579 0,6325 0,4553 0,5807 0,5807 0,5807 0,5807 0,5807 0,5807 0,5807 0,5514 NA 0,5114 1,0343</td> <td>1,2660 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241 1,0241 1,0241 1,0241 1,0241 1,0254 0,9747 NA 1,4856 0,08651 0,08651 0,08651</td> <td></td> <td></td>	0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7048 0 7320 0 6099 0 7235 0 7804 0 7066 0 7881 0 6721 0 8215 0 7297 NA	1 0916 1 0655 1 .4417 1 .2847 1 .2327 1 .1770 1 .3701 1 .2668 1 .3018 1 .3584 1 .6101 1 .5278 1 .5167 1 .4048 1 .40	0,5991 1,0837 NA 0,6618 0,8033 0,6736 1,1840 0,7533 0,6786 0,4579 0,6325 0,4553 0,5807 0,5807 0,5807 0,5807 0,5807 0,5807 0,5807 0,5514 NA 0,5114 1,0343	1,2660 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241 1,0241 1,0241 1,0241 1,0241 1,0254 0,9747 NA 1,4856 0,08651 0,08651 0,08651		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/23.0) Cer(d18.2/23.0) Cer(d18.2/24.1) GlcCer(d18.1/16.0) GlcCer(d18.1/16.0) GlcCer(d18.1/16.1) GlcCer(d18.1/16.0) GlcCer(d18.1/23.0) GlcCer(d18.1/23.0) GlcCer(d18.1/23.0) GlcCer(d18.1/24.0) GlcCer(d18.1/24.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/26.0) GlcC	0 9870 0 9557 0 5583 1 3553 0 9520 0 6456 0 7048 0 7048 0 7320 0 8699 0 7235 0 7804 0 7881 0 6721 0 68215 0 7297 NA 1 1701 1 3228	1 0916 1 0655 1 4417 1 2847 1 2847 1 2827 1 1770 1 2868 1 3018 1 3018 1 3084 1 6101 1 5276 1 5167 1 4048 1 4047 1 4047 1 4048 1 4047 1 2703 NA 0 9053 0 8800 0 9053 0 8800 0 8800 0 9053 0 8800 0 8800 0 8800 0 8800 0 8800 0 8800 0 8800 0 9053 0 9055 0	0.5991 1.0837 NA 0.6518 0.6033 0.6736 1.1840 0.7533 0.6996 0.4579 0.6325 0.4553 0.4553 0.5867 0.7622 0.6221 NA 0.5144 1.0343 1.1933 0.6990	1,2360 0,883 NA 0,7618 0,881 1,0994 1,0526 1,1468 1,2754 1,0526 1,2554 1,0241 1,067 1,0069 1,1354 0,09747 NA 1,4856 0,8651 0,53820 0,5382000000000000000000000000000000000		

Clustering data with hclust algorithm for (Study ST001140) (Analysis AN001871)

Metabolite	Structure	F1	F2	F3	F4
GlcCer(d18:2/24:0)	ME272158	NA	NA	0.51	1.49
LacCer(d18:2/24:1)	ME272168	NA	NA	1.13	0.87
GM3(d18:1/24:0)	ME272142	NA	NA	1.02	0.98
LacCer(d18:1/23:0)	ME272163	NA	NA	0.94	1.06
GM3(d18:2/20:0)	ME272146	1.10	0.90	NA	NA
LacCer(d18:2/22:0)	ME272167	1.19	0.81	NA	NA
Cer(d18:2/18:0)	ME272134	0.56	1.44	NA	NA
GlcCer(d18:2/16:0)	ME272157	0.73	1.27	NA	NA
GM3(d18:1/18:0)	ME272140	1.32	0.88	1.19	0.54
GM3(d18:2/18:0)	ME272145	1.29	0.80	1.48	0.39
Cer(d18:2/24:1)	ME272138	0.65	1.18	1.18	1.05
GM3(d18:2/24:1)	ME272147	0.82	0.93	1.55	0.79
GM3(d18:2/16:0)	ME272144	0.95	0.75	1.34	1.05
SM(42:3)	ME272185	0.92	0.87	1.35	0.94
.acCer(d18:2/16:0)	ME272166	0.73	0.89	0.97	1.54
Cer(d18:1/24:1)	ME272130	0.82	1.06	0.76	1.40
SM(36:1)	ME272174	0.95	0.91	0.66	1.53
Cer(d18:1/18:0)	ME272125	0.69	0.99	0.52	1.92
GlcCer(d18:1/18:0)	ME272150	0.61	1.30	0.46	1.66
GlcCer(d18:1/16:0)	ME272148	0.70	1.37	0.75	1.15
SlcCer(d18:1/24:1)	ME272155	0.67	1.40	0.76	1.14
SIcCer(d18:1/16:1)	ME272149	0.73	1.29	0.70	1.28
GlcCer(d18:1/20:0)	ME272151	0.72	1.36	0.63	1.26
GlcCer(d18:1/22:0)	ME272152	0.78	1.61	0.46	1.02
GlcCer(d18:1/23:0)	ME272153	0.71	1.53	0.58	1.11
GlcCer(d18:1/24:0)	ME272154	0.79	1.52	0.59	1.01
BlcCer(d18:1/25:0)	ME272156	0.82	1.48	0.62	0.97
SM(32:2)	ME272170	1.16	0.80	1.27	0.79
GM3(d18:1/16:0)	ME272139	1.17	0.91	1.03	0.87
SM(32:1)	ME272169	1.17	0.90	1.05	0.85
GM3(d18:1/24:1)	ME272143	1.09	1.01	1.15	0.72

Hierarchial Cluster analysis

Heatmap Cluster analysis

Network analysis tools (mapped to classification) Pearson correlation or Debiased Sparse Partial Correlation (DSPC)

Select groups, correlation method, correlation value cutoff, DSPC p-value cutoff and sample normalization options

Hover over edge to display correlation coefficient

Zoom in to see metabolite labels

Network analysis tools (mapped to fold-change)

Select groups to compare by fold-change, correlation method, correlation value cutoff, DSPC p-value cutoff and sample normalization options

Zoom in to see metabolite labels

Multivariate analysis tools (LDA example)

Classification and feature analysis tools (OPLS-DA example)

Scores plot

Meta-analysis tools (across different studies)

Metabolomics Tools:→Load and analyze your own dataset

Modular, portable suite of statistical tools for metabolomics analysis

- R statistics-based approach
 - Normalization and scaling
 - Bar graphs and Boxplots
 - Univariate Analysis
 - Multivariate Analysis
 - Clustering and Correlation
 - Feature Analysis
- > Ability to select and combine groups of experimental conditions (factors)
- Applicable to targeted and untargeted datasets
- Workflow enables classification of metabolite names via RefMet
- > Classified datasets are then amenable to class-specific and pathway-specific analysis

Perform data analysis on user-uploaded	data		
STEP 1: Load your data file (tab-delimited text)	Load example file	View example file	Classify metabolite names via RefMet
File format required: Column 1: sample names Column 2: group identifier (letters, numbers Columns 3 to n: Variables Data matrix (input file)	or text)		

Metabolomics Tools:→Load and analyze your own dataset

https://www.metabolomicsworkbench.org/data/analyze.php

Samples	Group CAR (16:	0)	CAR (18:	0)	CAR (18:	1)	CAR (18:	2)	CE(18:1))
S001_2	Affected/Male	32592	7400	25164	16371	39797	461580	342255	241473	26379
S002_27	Affected/Male	37821	13552	40988	26845	51799	526923	409751	250720	41055
S007_51	Affected/Male	9201	6037	6219	10361	18848	461700	168391	125282	3802
S008 59	Affected/Male	132519	15845	245076	159627	24173	437630	326360	358552	21342
S009_39	Affected/Male	24407	9146	51668	32965	42774	337701	362332	204264	13970
S013_29	Affected/Male	30813	7299	35485	25603	58491	386359	385114	286028	30002
S014_22	Affected/Male	33082	8830	36894	21874	49050	542047	420069	256991	36641
S015_5	Affected/Male	29115	7472	38326	23507	35022	230142	298691	174860	9054
S016_31	Affected/Male	34081	7571	57646	48296	50157	498962	426752	266928	36812
S018_50	Affected/Male	58917	11048	101684	70157	45607	463558	429808	284710	18142
S021_21	Affected/Male	22655	6631	28896	22833	60510	567791	461084	409043	40955
S022_14	Affected/Male	23852	7132	33083	20959	56129	465535	475318	425279	17626
S023_41	Affected/Male	26156	6751	44201	26734	57518	482054	447923	338220	46731
S024_43	Affected/Male	24502	7108	36540	25172	37975	488013	379549	371133	21571
S025_33	Affected/Male	10231	5945	9475	14291	22012	391757	281674	189573	2667
S026_23	Affected/Male	31683	9410	39957	30026	40384	477841	385080	341657	19780
S027_18	Affected/Male	24153	5860	36417	28030	41637	476109	382987	348275	20344
S028_35	Affected/Male	32603	6541	64274	44075	62381	480321	527889	425970	32329
S029_34	Affected/Male	29696	7858	39767	36869	51518	483914	494792	379614	31195
S031_9	Affected/Male	30138	6312	26999	22104	40489	476062	401627	325777	30745
S032_64	Affected/Female	32551	9934	45279	30568	50255	329084	417248	412746	12094
S034_66	Affected/Female	40129	7901	54879	52292	51006	515113	355455	367787	28220
S037_46	Affected/Female	55349	7426	103693	35440	22463	173160	191218	172002	6157
S038_8	Affected/Female	16663	9111	9982	11166	49852	365320	332450	208024	3605
S040_26	Affected/Female	30737	11822	30133	19357	28450	464703	349594	352426	25960
S041_69	Affected/Female	20351	9616	33138	15191	60271	308696	365188	384615	18781
S042_61	Affected/Female	44531	10508	87680	70868	34093	507718	452632	536826	22587
S044_3	Affected/Female	26159	7195	34041	31696	33092	482180	363697	362897	29765
S045_58	Affected/Female	53023	9926	96073	71568	34687	403564	295048	467228	32331
S046 24	Affected/Female	21720	5712	23667	10882	41203	279409	267775	243040	17383
S047 16	Affected/Female	17094	5225	24567	17196	42917	349825	298969	278524	36062
S049 48	Affected/Female	55655	10899	63535	62495	42110	401089	387996	400073	17062
S051_44	Affected/Female	22293	5128	36012	26083	38486	475328	410951	371971	18243
S053 11	Affected/Female	12268	4303	24253	21592	52598	385859	259803	369865	16433
S057_1	Affected/Female	26327	7078	29278	21698	61240	504927	420130	390436	28532
S059_28	Affected/Female	3859	2676	1881	2439	31575	296196	186595	106324	2445

File format required:

Column 1: sample names Column 2: group identifier (letters, numbers or text) Columns 3 to n: Variables

> This is an option to analyze your own dataset (as opposed to a submitted NMDR study)

Home Data Repository Databases Protocols	Tools Training / Events ⁶⁴ About Search
Overview Upload / Manage Studies Browse / Search Studies	Itorials FAQ
Analyze Studies	Analyze Studies
	MS Searches
Analyze studies using Jupyter Notebooks or the following o	P REST Service
MS/NMR studies identifying named metaboli	External Tools (Links)
Select a study for analysis:	
Select a study	
Submit	
Analysis tools may also be accessed from within each	study page using the 'Perform statistical analysis' link
Comparative analysis across studies	
Perform meta-analysis on selected studies (compa	are ratios of 2 selected metabolites)
Compare list of metabolites in 2 selected studies ((all analyses)
Compare list of metabolites in 2 selected studies ((individual analyses)
MS untargeted experiments containing unide	entified ions
Search Untargeted MS data by m/z, retention time,	, instrumentation
Superimpose unknown m/z on RefMet mass defect	at plot
Deuferme date en chusie en usen unla solo d'até	_
Perform data analysis on user-uploaded data	a
Load and analyze your own dataset	
Volcano Port	metabolis das
California (California)	metabolite dissue: -CD vy ecotorsi
Brachel R. And another Management of Angle	
Cit bits adds	
UT Carbonylic adds	▙_
Startiste 3A	T
Nac(Lanito acids	<u> </u>
00 02 04 06 08 10 12 14 16 18 20	

Analysis tools available on user-uploaded data

(these are NOT submitted studies -a data table is uploaded via a form)

Normalization and scaling

Sample normalization Analyte scaling Relative log abundance plot

Bargraphs and Boxplots

Bargraph Bargraph ratio Boxplot

Univariate Analysis

Volcano Plot ANOVA analysis Debiased sparse partial correlation analysis

Clustering and Correlation

Hierarchical Cluster Analysis Pearson Correlation: Clustered correlation analysis

Multivariate Analysis

Principal Component Analysis Linear Discriminant Analysis

Classification and Feature Analysis

OPLS-DA/VIP analysis Random Forest/VIP analysis Mapping of input metabolite names to RefMet facilitates enables deployment of classification tools

Perform data analysis on user-uploaded	data	
STEP 1: Load your data file (tab-delimited tex	t file or csv file) Load example file Classify metabolite names via R	efMet
File format required: Column 1: sample names Column 2: group identifier (letters, numbers c Columns 3 to n: Variables View input file	or text)	
STEP 2: Choose a methed below		
	Normalization and scaling	
Sample normalization:		Create
Analyte scaling:	Scaling method: Level 🗸	Create
Relative log abundance plot:	Use originial dataset	Create
	Bargraphs and Boxplots	
Bargraph:	ANALYTE: CAR(16:0) V	Create
Bargraph ratio:	ANALYTE1: CAR(16:0) V ANALYTE2: CAR(16:0) V	Create
Boxplot:	ANALYTE: CAR(16:0) V	Create
	Univariate Analysis	
Volcano Plot:	The members of each group should be DIFFERENT. Group1 Experimental factor Group2 Affected/Female(21) Affected/Male(20) Control/Female(17) QC-test(3)	
	P-value cutoff: 0.05 V Fold-change cutoff: 1.5 V	Create
ANOVA analysis:	Select 2 or more experimental factors for ANOVA analysis. Group Experimental factor Affected/Female(21) Affected/Male(20) Control/Female(17) Control/Male(13) QC-test(3)	
	P-value cutoff: 0.05 v	Create
	Select groups for DSPC analysis.	
	Group Experimental factor	
	Affected/Female(21)	

Metabolomics Tools:→Load and analyze your own dataset

Examples of output from online tools

Unweighted enrichment by metabolite class

(View P-value weighted Class Enrichment) (View Class Enrichment by hypergeometric distribution) (View Class Enrichment by Kolmorogov-Smirnov test)

NMDR Tutorials

Tutorials and Documentation

NMDR Study Submission

NMDR study submission tutorial (PDF)

NMDR Data Browsing/Searching/Analysis

- Metabolomics Workbench overview and infrastructure (PDF)
- NMDR browsing and searching tutorial (PDF)
- RefMet standardized nomenclature/Metabolite structure database tutorial (PDF)
- Metabolomics Workbench REST service tutorial (PDF)
- MetStat summary tool tutorial (PDF)
- NMDR analysis tools tutorial (PDF)

mwTab File Usage

• mwTab file specification (PDF)

REST service API

• REST service API (PDF)

Metabolomics Workbench collaborations with DTC's

Web tools

- MetaBatch Omic Browser: 🗗 A web application developed at MD Anderson Cancer Center (John Weinstein group) for analysis and visualization of batch effects in NMDR datasets. Included are dynamically interactive Next-Generation Clustered Heat Maps, PCA+, UMAP, box plot, violin plot, and other visualizations for essentially all NMDR datasets.
- Next-Generation Clustered Heat Map (NGCHM) Viewer: A dynamically interactive web environment, developed at MD Anderson Cancer Center (John Weinstein group), for exploration of omic datasets with extreme zooming, panning, searches, covariate bars, dozens of link-outs, high-resolution graphics, and other features. Included is coordination with UMAP, t-SNE, PCA+, pathway, and other visualizations, with quantitative analyses. Updates are done periodically as additional datasets are added to NMDR. https://www.biorxiv.org/content/10.1101/2020.10.31.363580v1.full.pdf 🗗 .
- SIMPEL: (Stable Isotope assisted Metabolomics for Pathway ELucidation) An R package for targeted extraction and analysis of isotopologue data developed by Jamey Young (Vanderbilt), Doug Allen (Danforth Center) and colleagues. The software works with any time-course labeling data and has been incorporated into a web application here. The R package may also be downloaded via Github 🚱 . Please see the tutorial for details.

Docker tools

• MSCAT: P A dockerized application developed by the group led by Katerina Kechris and Debashis Ghosh at the University of Colorado Anschutz Medical Campus in conjunction with the Metabolomics Workbench. The application provides a database of metabolomics software tools and allows one to generate potential software workflows using an online interface.

Shiny apps

- RefMet name search: P A Shiny app developed by the Metabolomics Workbench to search the RefMet standardized metabolite nomenclature database by metabolite name.
- RefMet MS search: 🗗 A Shiny app developed by the Metabolomics Workbench to search the RefMet standardized metabolite nomenclature database with a list of m/z values (Input is a text file with a single column of m/z values).
- MetStat search: 🗗 A Shiny app developed by the Metabolomics Workbench to display summary information in NMDR based on analysis method, species, sample source and disease association.
- PalRKAT: A Shiny app developed by the group led by Katerina Kechris and Debashis Ghosh at the University of Colorado Anschutz Medical Campus. PalRKAT is a pathway integrated tool for improving testing power on high dimensional data by including graph topography in the kernel machine regression setting.
- Marr: 🗗 A Shiny app developed by the group led by Katerina Kechris and Debashis Ghosh at the University of Colorado Anschutz Medical Campus which implements the method Maximum Rank Reproducibility (MaRR), a nonparametric approach that detects reproducible signals using a maximal rank statistic for high-dimensional biological data. An R package version is also available for download from **Github** 🗗 .

Collaboration with Global Natural Product Social Molecular Networking (GNPS)

View spectral details of MS raw data files deposited in NMDR via the GNPS dashboard

GNPS Dashboard: Collaborative Analysis of Mass Spectrometry Data in the Web Browser D. Petras et al, Nature Methods (2021) https://doi.org/10.1038/s41592-021-01339-5

Collaboration with Global Natural Product Social Molecular Networking (GNPS) <u>Universal spectrum Identifier for mass spectra</u>

Proteomics data

Metabolomics data proposal

The Metabolomics Spectrum Resolver builds upon the USI standard developed by the HUPO. USIs are formatted as follows:

mzspec:<collection>:<msRun>:<indexType>:<indexNumber>:<optional interpretation> Example:mzspec:ST000003:iPSC-T1R1:scan:3

USI request from NMDR

MS2 peaklist/metadata

Metabolomics Spectrum Resolver Web Service

NIH's Common Fund Data Ecosystem

Ongoing efforts involve development of ontologies and parts lists of NMDR study data:

Specification of species designation and sample source at an **individual sample level** (>200,000 samples in NMDR)

REST service to retrieve sample data from NMDR

	I. Contraction of the second				
Sample context					
Fetch information for an individual sample in a study*New	https://www.metabolomicsworkbench.org/rest/sample/mb_sample_id /SA002633/all				

Metabolomics Workbench/NMDR and FAIR principles

Findable:

DOIs are assigned to each submitted dataset/study. schema.org formatted metadata is embedded in Metabolomicsworkbench.org which allows it to be found and indexed by search engines MetabolomeXchange EBI: Omics Discovery Index

Accessible:

Metabolomics Workbench website: multiple browsing/download options A REST API is provided for accessing data

Interoperable:

Using community standard **mwTAB** to describe data mwTAB documented at fairsharing.org Multiple positive outcomes via **RefMet** standardized nomenclature

Reusable:

Download and re-process raw data from NMDR Download and re-analyze processed data (multiple format options) Jupyter notebooks illustrate how to (re)use the data Thank you!

UCSD Main Library

San Diego Supercomputer Center