#METABOLOMICS WORKBENCH TruxalCarlson_20200324_121313 DATATRACK_ID:1951 STUDY_ID:ST001393 ANALYSIS_ID:AN002329 PROJECT_ID:PR000956
VERSION             	1
CREATED_ON             	June 4, 2020, 4:06 pm
#PROJECT
PR:PROJECT_TITLE                 	Sea-ice diatom compatible solute shifts
PR:PROJECT_TYPE                  	Marine Metabolomics
PR:PROJECT_SUMMARY               	Sea-ice algae provide an important source of primary production in polar
PR:PROJECT_SUMMARY               	regions, yet we have limited understanding of their responses to the seasonal
PR:PROJECT_SUMMARY               	cycling of temperature and salinity. Using a targeted liquid chromatography-mass
PR:PROJECT_SUMMARY               	spectrometry-based metabolomics approach, we found that axenic cultures of the
PR:PROJECT_SUMMARY               	Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in
PR:PROJECT_SUMMARY               	their metabolomes when grown in a matrix of conditions that included
PR:PROJECT_SUMMARY               	temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively
PR:PROJECT_SUMMARY               	small changes in growth rate. Temperature exerted a greater effect than salinity
PR:PROJECT_SUMMARY               	on cellular metabolite pool sizes, though the N- or S-containing compatible
PR:PROJECT_SUMMARY               	solutes, 2,3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT),
PR:PROJECT_SUMMARY               	dimethylsulfoniopropionate (DMSP), and proline responded strongly to both
PR:PROJECT_SUMMARY               	temperature and salinity, suggesting complexity in their control. We saw the
PR:PROJECT_SUMMARY               	largest (> 4 fold) response to salinity for proline. DHPS, a rarely studied but
PR:PROJECT_SUMMARY               	potential compatible solute, reached the highest intracellular compatible solute
PR:PROJECT_SUMMARY               	concentrations of ~ 85 mM. When comparing the culture findings to natural Arctic
PR:PROJECT_SUMMARY               	sea-ice diatom communities, we found extensive overlap in metabolite profiles,
PR:PROJECT_SUMMARY               	highlighting the relevance of culture-based studies to probe environmental
PR:PROJECT_SUMMARY               	questions. Large changes in sea-ice diatom metabolomes and compatible solutes
PR:PROJECT_SUMMARY               	over a seasonal cycle could be significant components of biogeochemical cycling
PR:PROJECT_SUMMARY               	within sea ice.
PR:INSTITUTE                     	University of Washington
PR:DEPARTMENT                    	School of Oceanography
PR:LABORATORY                    	Ingalls Lab
PR:LAST_NAME                     	Dawson
PR:FIRST_NAME                    	Hannah
PR:ADDRESS                       	1501 NE Boat Street, Marine Science Building, Room G, Seattle, WA 98195
PR:EMAIL                         	hmdawson@uw.edu
PR:PHONE                         	2062216750
PR:FUNDING_SOURCE                	Booth Foundation, NSF, UW Graduate Top Scholar Award, Gordon and Betty Moore
PR:FUNDING_SOURCE                	Foundation
PR:PUBLICATIONS                  	Dawson et al., Elementa
#STUDY
ST:STUDY_TITLE                   	Sea-ice diatom compatible solute shifts
ST:STUDY_TYPE                    	Compatible solutes were quantified in sea-ice diatoms
ST:STUDY_SUMMARY                 	Sea-ice algae provide an important source of primary production in polar
ST:STUDY_SUMMARY                 	regions, yet we have limited understanding of their responses to the seasonal
ST:STUDY_SUMMARY                 	cycling of temperature and salinity. Using a targeted liquid chromatography-mass
ST:STUDY_SUMMARY                 	spectrometry-based metabolomics approach, we found that axenic cultures of the
ST:STUDY_SUMMARY                 	Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in
ST:STUDY_SUMMARY                 	their metabolomes when grown in a matrix of conditions that included
ST:STUDY_SUMMARY                 	temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively
ST:STUDY_SUMMARY                 	small changes in growth rate. Temperature exerted a greater effect than salinity
ST:STUDY_SUMMARY                 	on cellular metabolite pool sizes, though the N- or S-containing compatible
ST:STUDY_SUMMARY                 	solutes, 2,3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT),
ST:STUDY_SUMMARY                 	dimethylsulfoniopropionate (DMSP), and proline responded strongly to both
ST:STUDY_SUMMARY                 	temperature and salinity, suggesting complexity in their control. We saw the
ST:STUDY_SUMMARY                 	largest (> 4 fold) response to salinity for proline. DHPS, a rarely studied but
ST:STUDY_SUMMARY                 	potential compatible solute, reached the highest intracellular compatible solute
ST:STUDY_SUMMARY                 	concentrations of ~ 85 mM. When comparing the culture findings to natural Arctic
ST:STUDY_SUMMARY                 	sea-ice diatom communities, we found extensive overlap in metabolite profiles,
ST:STUDY_SUMMARY                 	highlighting the relevance of culture-based studies to probe environmental
ST:STUDY_SUMMARY                 	questions. Large changes in sea-ice diatom metabolomes and compatible solutes
ST:STUDY_SUMMARY                 	over a seasonal cycle could be significant components of biogeochemical cycling
ST:STUDY_SUMMARY                 	within sea ice.
ST:INSTITUTE                     	University of Washington
ST:DEPARTMENT                    	School of Oceanography
ST:LABORATORY                    	Ingalls Lab
ST:LAST_NAME                     	Dawson
ST:FIRST_NAME                    	Hannah
ST:ADDRESS                       	1501 NE Boat Street, Marine Science Building, Room G, Seattle, WA 98195
ST:EMAIL                         	hmdawson@uw.edu
ST:PHONE                         	2062216750
ST:PUBLICATIONS                  	Dawson et al., Elementa
#SUBJECT
SU:SUBJECT_TYPE                  	Other
SU:SUBJECT_SPECIES               	Nitzschia lecointei
SU:TAXONOMY_ID                   	186028
SU:GENDER                        	Not applicable
#SUBJECT_SAMPLE_FACTORS:         	SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data
SUBJECT_SAMPLE_FACTORS           	-	32ppt-1C_A	Type:Smp | Salinity:32 | Temp_degC:-1	Replicate=A; RFU=605.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_A;170413_Smp_40ppt4C_C;170410_Smp_32ppt-1C_A
SUBJECT_SAMPLE_FACTORS           	-	32ppt-1C_B	Type:Smp | Salinity:32 | Temp_degC:-1	Replicate=B; RFU=551.2; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_B;170413_Smp_32ppt-1C_B;170410_Smp_32ppt-1C_B
SUBJECT_SAMPLE_FACTORS           	-	32ppt-1C_C	Type:Smp | Salinity:32 | Temp_degC:-1	Replicate=C; RFU=550.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_C;170413_Smp_32ppt-1C_C;170410_Smp_32ppt-1C_C
SUBJECT_SAMPLE_FACTORS           	-	32ppt4C_A	Type:Smp | Salinity:32 | Temp_degC:4	Replicate=A; RFU=847.1; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_A;170413_Smp_32ppt4C_B;170410_Smp_32ppt4C_A
SUBJECT_SAMPLE_FACTORS           	-	32ppt4C_B	Type:Smp | Salinity:32 | Temp_degC:4	Replicate=B; RFU=967.1; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_B;170413_Smp_32ppt4C_A;170410_Smp_32ppt4C_B
SUBJECT_SAMPLE_FACTORS           	-	32ppt4C_C	Type:Smp | Salinity:32 | Temp_degC:4	Replicate=C; RFU=918.5; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_C;170413_Smp_32ppt4C_C;170410_Smp_32ppt4C_C
SUBJECT_SAMPLE_FACTORS           	-	40ppt-1C_A	Type:Smp | Salinity:40 | Temp_degC:-1	Replicate=A; RFU=860.2; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_A;170413_Smp_40ppt-1C_A;170410_Smp_40ppt-1C_A
SUBJECT_SAMPLE_FACTORS           	-	40ppt-1C_B	Type:Smp | Salinity:40 | Temp_degC:-1	Replicate=B; RFU=681.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_B;170413_Smp_40ppt4C_B;170410_Smp_40ppt-1C_B
SUBJECT_SAMPLE_FACTORS           	-	40ppt-1C_C	Type:Smp | Salinity:40 | Temp_degC:-1	Replicate=C; RFU=814.3; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_C;170413_Smp_40ppt-1C_C;170410_Smp_40ppt-1C_C
SUBJECT_SAMPLE_FACTORS           	-	40ppt4C_A	Type:Smp | Salinity:40 | Temp_degC:4	Replicate=A; RFU=581.8; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_A;170413_Smp_40ppt4C_A;170410_Smp_40ppt4C_A
SUBJECT_SAMPLE_FACTORS           	-	40ppt4C_B	Type:Smp | Salinity:40 | Temp_degC:4	Replicate=B; RFU=681.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_B;170413_Smp_40ppt-1C_B;170410_Smp_40ppt4C_B
SUBJECT_SAMPLE_FACTORS           	-	40ppt4C_C	Type:Smp | Salinity:40 | Temp_degC:4	Replicate=C; RFU=662; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_C;170413_Smp_32ppt-1C_A;170410_Smp_40ppt4C_C
SUBJECT_SAMPLE_FACTORS           	-	ASWFilterBlk_1	Type:Blk | Salinity:NA | Temp_degC:NA	Replicate=1; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_1;170615_Blk_ASWFilterBlk_1;170612_Blk_ASWFilterBlk_1
SUBJECT_SAMPLE_FACTORS           	-	ASWFilterBlk_2	Type:Blk | Salinity:NA | Temp_degC:NA	Replicate=2; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_2;170615_Blk_ASWFilterBlk_2;170612_Blk_ASWFilterBlk_2
SUBJECT_SAMPLE_FACTORS           	-	ASWFilterBlk_3	Type:Blk | Salinity:NA | Temp_degC:NA	Replicate=3; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_3;170615_Blk_ASWFilterBlk_3;170612_Blk_ASWFilterBlk_3
SUBJECT_SAMPLE_FACTORS           	-	MediaBlk_ppt32	Type:Blk | Salinity:32 | Temp_degC:NA	Replicate=ppt32; RFU=1; Vol_L=0.07; RAW_FILE_NAME=170410_Blk_MediaBlk_ppt32;170413_Blk_MediaBlk_ppt32;170410_Blk_MediaBlk_ppt32
SUBJECT_SAMPLE_FACTORS           	-	MediaBlk_ppt40	Type:Blk | Salinity:40 | Temp_degC:NA	Replicate=ppt40; RFU=1; Vol_L=0.07; RAW_FILE_NAME=170410_Blk_MediaBlk_ppt40;170413_Blk_MediaBlk_ppt40;170410_Blk_MediaBlk_ppt40
SUBJECT_SAMPLE_FACTORS           	-	S2C_4	Type:Smp | Salinity:NA | Temp_degC:NA	Replicate=4; RFU=NA; Vol_L=0.1671; RAW_FILE_NAME=170612_Smp_S2C_4;170615_Smp_S2C_4;170612_Smp_S2C_4
SUBJECT_SAMPLE_FACTORS           	-	S2C_5	Type:Smp | Salinity:NA | Temp_degC:NA	Replicate=5; RFU=NA; Vol_L=0.2486; RAW_FILE_NAME=170612_Smp_S2C_5;170615_Smp_S2C_5;170612_Smp_S2C_5
SUBJECT_SAMPLE_FACTORS           	-	S2C_6	Type:Smp | Salinity:NA | Temp_degC:NA	Replicate=6; RFU=NA; Vol_L=0.2049; RAW_FILE_NAME=170612_Smp_S2C_6;170615_Smp_S2C_6;170612_Smp_S2C_6
#COLLECTION
CO:COLLECTION_SUMMARY            	Cultured diatom cells at different salinities and temperatures grown to
CO:COLLECTION_SUMMARY            	exponential phase were filtered onto 0.2-micron filters and extracted for
CO:COLLECTION_SUMMARY            	metabolites as described in methods. Three dedicated ice cores were sampled from
CO:COLLECTION_SUMMARY            	the Chukchi Sea near Utqiaġvik, AK. The bottom 5-cm sections were placed in
CO:COLLECTION_SUMMARY            	polycarbonate tubs, allowed to melt at 4°C in artificial seawater, and filtered
CO:COLLECTION_SUMMARY            	onto 0.2-micron filters. Filters were extracted for metabolites as described in
CO:COLLECTION_SUMMARY            	methods. All filters were frozen in liquid nitrogen immediately after filtration
CO:COLLECTION_SUMMARY            	and stored in a -80 C freezer until extraction.
CO:SAMPLE_TYPE                   	Diatom cells/Particulate matter from sea ice cores
CO:STORAGE_CONDITIONS            	Described in summary
#TREATMENT
TR:TREATMENT_SUMMARY             	Diatom cells were cultured in a matrix of two temperatures (–1°C and 4°C)
TR:TREATMENT_SUMMARY             	and two salinities (32 and 40) in triplicate. There was no treatment for the sea
TR:TREATMENT_SUMMARY             	ice cores – this was a study of how the cultured diatoms compare to the
TR:TREATMENT_SUMMARY             	diatom-dominated Arctic sea-ice communities.
#SAMPLEPREP
SP:SAMPLEPREP_SUMMARY            	Each sample was extracted using a modified Bligh-Dyer extraction. Briefly,
SP:SAMPLEPREP_SUMMARY            	filters were cut up and put into 15 mL teflon centrifuge tubes containing a
SP:SAMPLEPREP_SUMMARY            	mixture of 100 µm and 400 µm silica beads. Heavy isotope-labeled internal
SP:SAMPLEPREP_SUMMARY            	standards were added along with ~2 mL of cold aqueous solvent (50:50
SP:SAMPLEPREP_SUMMARY            	methanol:water) and ~3 mL of cold organic solvent (dichloromethane). The samples
SP:SAMPLEPREP_SUMMARY            	were shaken on a FastPrep-24 Homogenizer for 30 seconds and chilled in a -20 °C
SP:SAMPLEPREP_SUMMARY            	freezer repeatedly for three cycles of bead-beating and a total of 30 minutes of
SP:SAMPLEPREP_SUMMARY            	chilling. The organic and aqueous layers were separated by spinning samples in a
SP:SAMPLEPREP_SUMMARY            	centrifuge at 4,300 rpm for 2 minutes at 4 °C. The aqueous layer was removed to
SP:SAMPLEPREP_SUMMARY            	a new glass centrifuge tube. The remaining organic fraction was rinsed three
SP:SAMPLEPREP_SUMMARY            	more times with additions of 1 to 2 mL of 50:50 methanol:water. All aqueous
SP:SAMPLEPREP_SUMMARY            	rinses were combined for each sample and dried down under N2 gas. The remaining
SP:SAMPLEPREP_SUMMARY            	organic layer was transferred into a clean glass centrifuge tube and the
SP:SAMPLEPREP_SUMMARY            	remaining bead beating tube was rinsed two more times with cold organic solvent.
SP:SAMPLEPREP_SUMMARY            	The combined organic rinses were centrifuged, transferred to a new tube, and
SP:SAMPLEPREP_SUMMARY            	dried under N2 gas. Dried aqueous fractions were re-dissolved in 380 µL of
SP:SAMPLEPREP_SUMMARY            	water. Dried organic fractions were re-dissolved in 380 µL of 1:1
SP:SAMPLEPREP_SUMMARY            	water:acetonitrile. 20 µL of isotope-labeled injection standards in water were
SP:SAMPLEPREP_SUMMARY            	added to both fractions. Blank filters were extracted alongside samples as
SP:SAMPLEPREP_SUMMARY            	methodological blanks.
SP:PROCESSING_STORAGE_CONDITIONS 	On ice
SP:EXTRACTION_METHOD             	Bligh-Dyer
SP:EXTRACT_STORAGE               	-80℃
#CHROMATOGRAPHY
CH:CHROMATOGRAPHY_SUMMARY        	See attached summary
CH:CHROMATOGRAPHY_TYPE           	HILIC
CH:INSTRUMENT_NAME               	Waters Acquity I-Class
CH:COLUMN_NAME                   	SeQuant ZIC- pHILIC (150 x 2.1mm, 5um)
#ANALYSIS
AN:ANALYSIS_TYPE                 	MS
#MS
MS:INSTRUMENT_NAME               	Thermo Q Exactive HF hybrid Orbitrap
MS:INSTRUMENT_TYPE               	Orbitrap
MS:MS_TYPE                       	ESI
MS:ION_MODE                      	NEGATIVE
MS:MS_COMMENTS                   	See protocol, data from culture samples
#MS_METABOLITE_DATA
MS_METABOLITE_DATA:UNITS	Normalized Peak Area Per RFU
MS_METABOLITE_DATA_START
Samples	32ppt-1C_A	32ppt-1C_B	32ppt-1C_C	32ppt4C_A	32ppt4C_B	32ppt4C_C	40ppt-1C_A	40ppt-1C_B	40ppt-1C_C	40ppt4C_A	40ppt4C_B	40ppt4C_C	MediaBlk_ppt32	MediaBlk_ppt40
Factors	Type:Smp | Salinity:32 | Temp_degC:-1	Type:Smp | Salinity:32 | Temp_degC:-1	Type:Smp | Salinity:32 | Temp_degC:-1	Type:Smp | Salinity:32 | Temp_degC:4	Type:Smp | Salinity:32 | Temp_degC:4	Type:Smp | Salinity:32 | Temp_degC:4	Type:Smp | Salinity:40 | Temp_degC:-1	Type:Smp | Salinity:40 | Temp_degC:-1	Type:Smp | Salinity:40 | Temp_degC:-1	Type:Smp | Salinity:40 | Temp_degC:4	Type:Smp | Salinity:40 | Temp_degC:4	Type:Smp | Salinity:40 | Temp_degC:4	Type:Blk | Salinity:32 | Temp_degC:NA	Type:Blk | Salinity:40 | Temp_degC:NA
DHPS	25874543.94	25489446.27	26512505.63	14887867.22	12509887.49	15735596.73	20589709.18	28831546.29	24234743.79	24751035.71	21576599.44	20423500.57	14220	13070
MS_METABOLITE_DATA_END
#METABOLITES
METABOLITES_START
metabolite_name	quantitated m/z	CHEBI	KEGGNAME	MS_method	KEGG ID
DHPS	155.001422	CHEBI:60997	(R)-2,3-Dihydroxypropane-1-sulfonate	HILIC_QE_Neg	C19675
METABOLITES_END
#END