NMDR online browsing, data upload and analysis tools

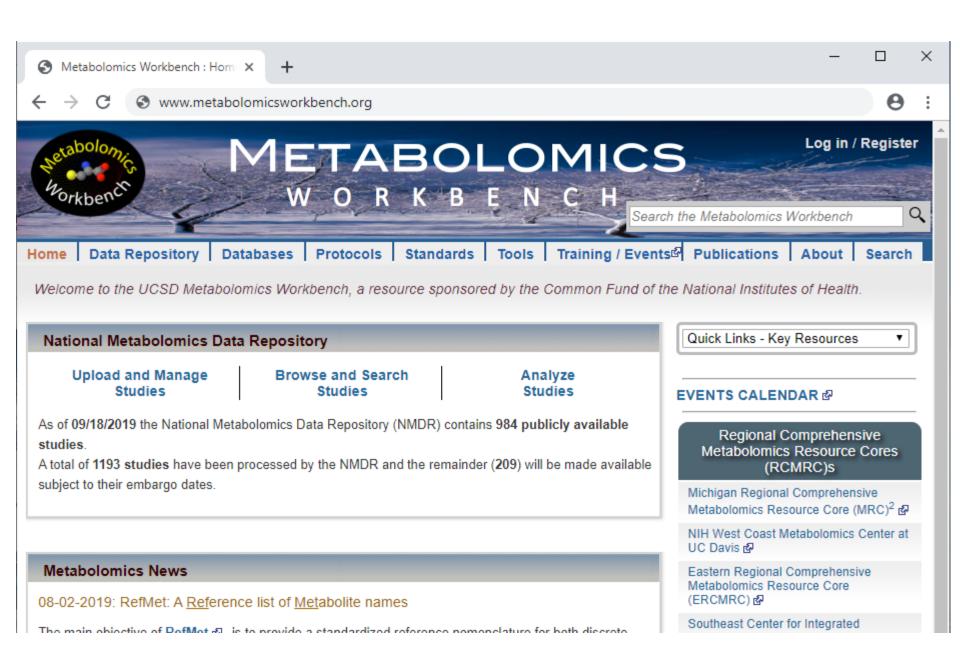
Overview

Metabolomics workbench

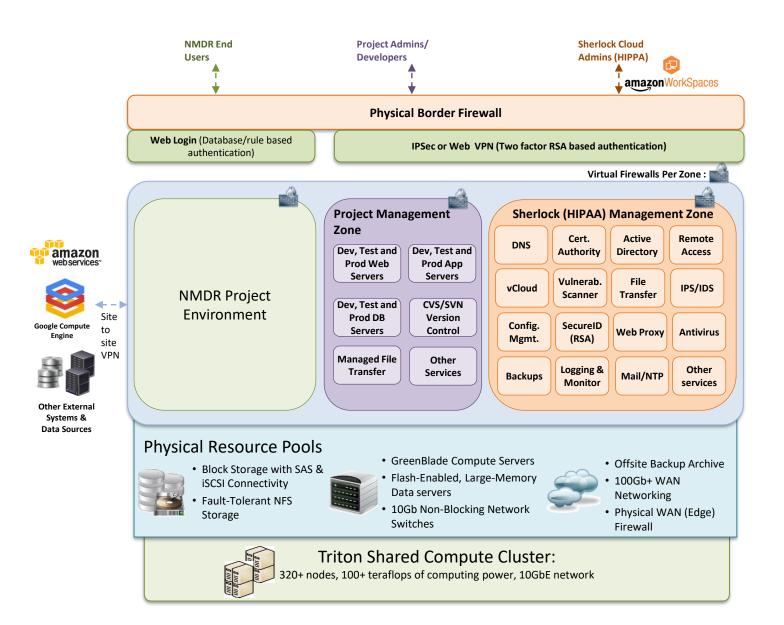
- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases

- Protocols
- Standards

Overview


Metabolomics workbench

- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases


Protocols

Standards

Metabolomics Workbench Home

Metabolomics vCloud infrastructure

Overview

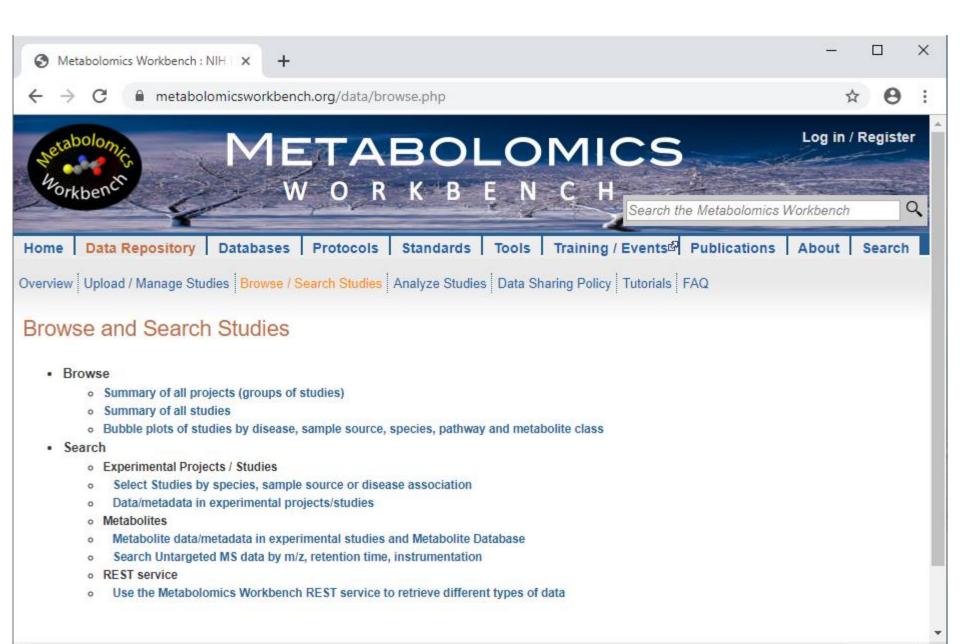
Metabolomics workbench

- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases

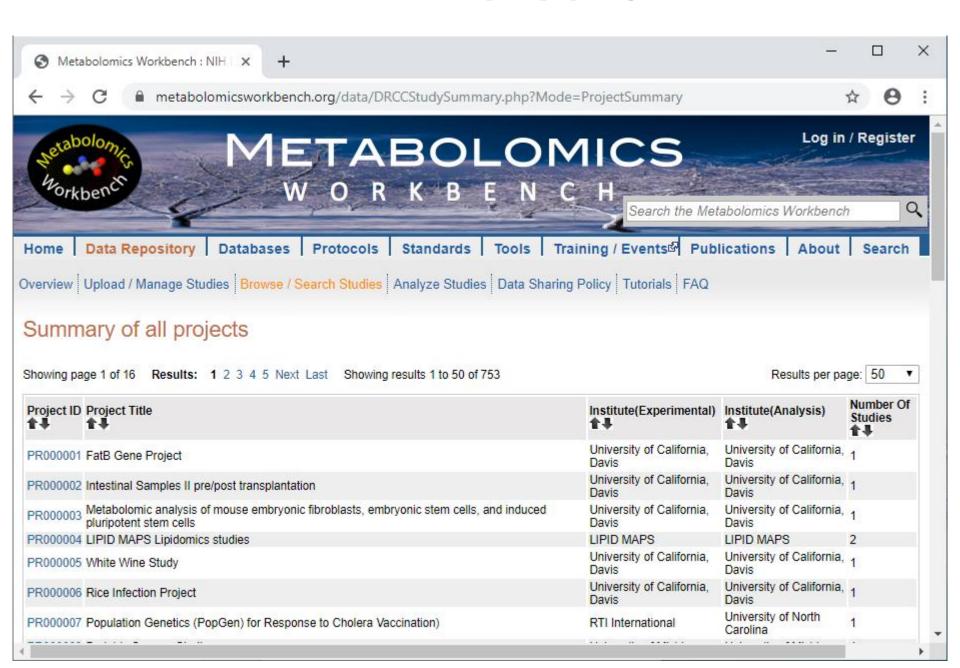
Protocols

Standards

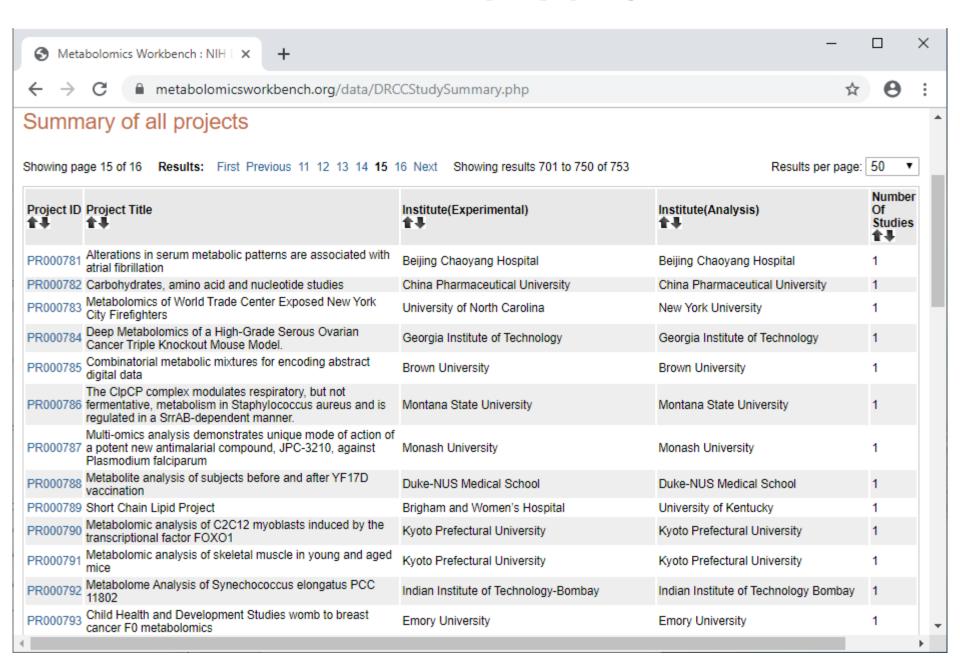
Data Repository

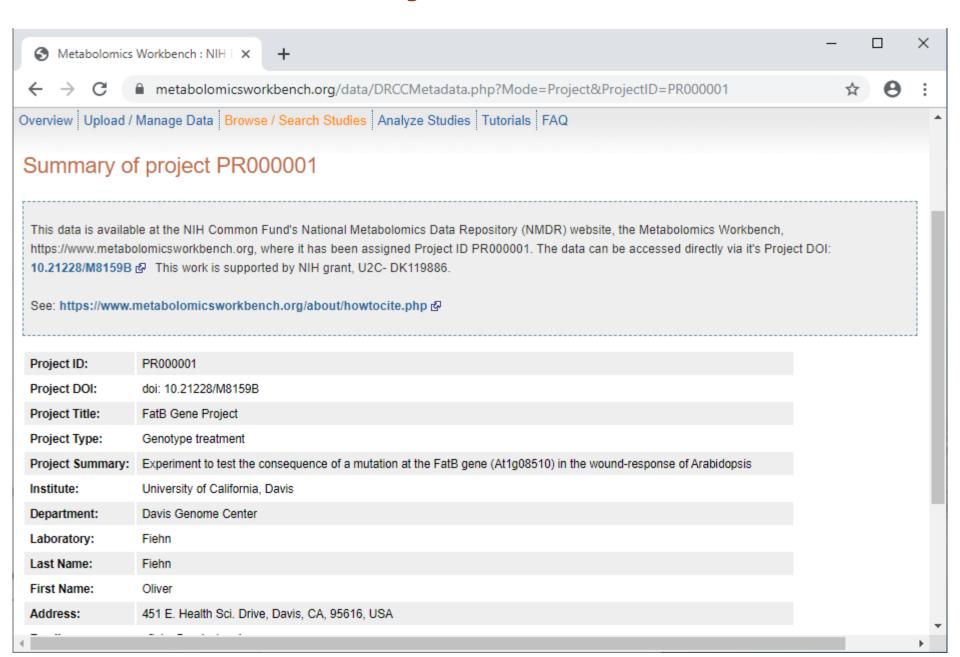


Overview


The NIH Common Fund's National Metabolomics Data Repository (NMDR) is now accepting metabolomics data for small and large studies on cells, tissues and organisms via the Metabolomics Workbench. We can accommodate a variety of metabolite analyses, including, but not limited to MS and NMR. In order to ensure reproducibility and interoperable use of data, we require experimental metadata (see tutorials) to be deposited along with the metabolite measurements. Processed data (measurements) maybe in the form of quantitated metabolite concentrations, MS peak height/area values, LC retention times, NMR binned areas, etc. Raw data in the form of MS and NMR binary files and associated parameter files may also be uploaded. We accept data from both targeted and untargeted studies. The Metabolomics Workbench also provides a suite of tools for analysis and visualization of the data. Step-by-step instructions for the whole process are provided on our Upload and Manage Experimental Data and Metadata page.

Experimental data curated by the NMDR is available for searching and analysis, via online interfaces ②. Users may also search the Metabolomics Workbench Metabolite Database ②. which now contains over 60,000 discrete structures and the RefMet database ②. which provides a standardized reference nomenclature for both discrete metabolite structures and isobaric species identified by MS and NMR techniques in metabolomics experiments.


Browse/Search Studies


Data summary by projects

Data summary by projects

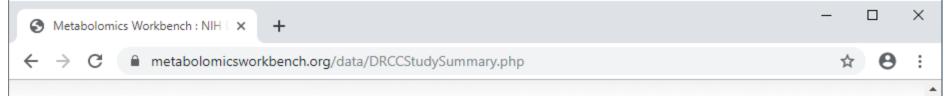
Project details

Project details with multiple studies

Summary of project PR000830

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000830. The data can be accessed directly via it's Project DOI: 10.21228/M8D68Q & This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php &


Project ID:	PR000830
Project DOI:	doi: 10.21228/M8D68Q
Project Title:	Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors
Project Summary:	Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by unknown mechanisms. We report here a large metabolomics study of plasma and cerebrospinal fluid showing that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. We demonstrate that immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, we show positive correlations among levels of IFN-inducible cytokines and KP dysregulation. Using metabolic tracing assays, we determine that IFN stimulation causes IDO1 overexpression and kynurenine overproduction in cells with T21, dependent on overexpression of IFN receptors encoded on chromosome 21. Finally, we show a mouse model

of DS carrying triplication of the IFN receptors exhibits KP dysregulation. Altogether, these results reveal a mechanism by which T21 could drive

Summary of all studies in project PR000830

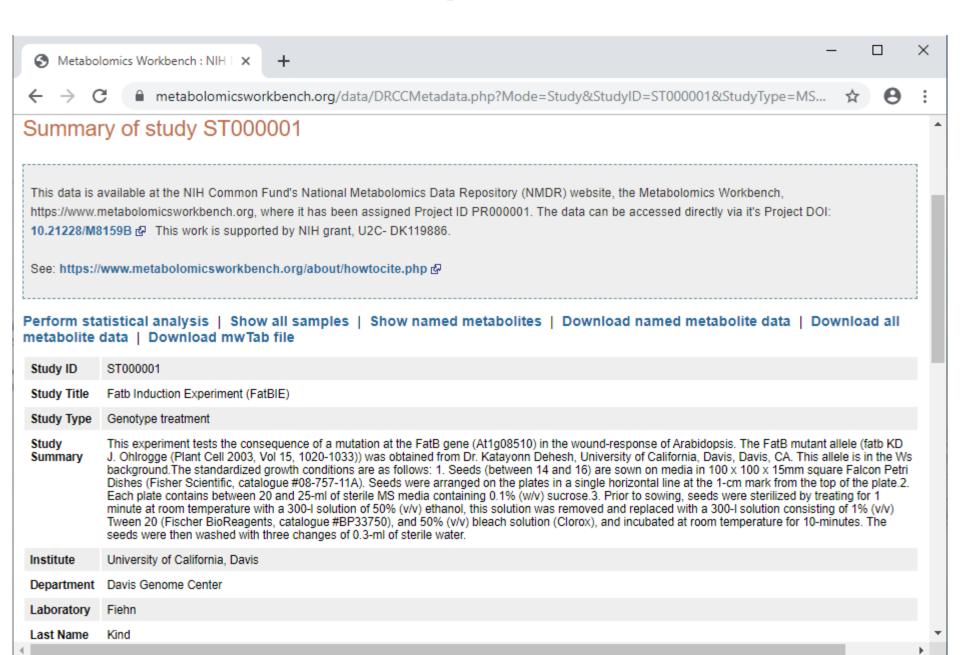
Study ID	Study Title	Species	Institute	Analysis (* : Contains Untargted data)	Release Date	Version	Samples	Download (* : Contains raw data)
ST001240	Global Metabolic Analysis Trisomy 21 - Cohort 2	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	388	Uploaded data (8.6G)*
ST001241	Global Metabolic Analysis Trisomy 21 - Cohort 3, Plasma	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	516	Uploaded data (6.5G)*
ST001242	Global Metabolic Analysis Trisomy 21 - Cohort 3, CSF	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	400	Uploaded data (5G)*
ST001243	Global Metabolic Analysis Trisomy 21 - Cohort 1	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	392	Uploaded data (7.8G)*

Data summary by studies

Summary of all studies

Click the Study ID to access detailed study information; download the mwTab (metadata and processed data) text file; and access the Statistics Toolbox for that study. Please refer to our Data:FAQ and About:How to Cite pages for information regarding how to cite the Metabolomics Workbench and datasets that you have uploaded or downloaded.

Showing page 1 of 24 Results: 1 2 3 4 5 Next Last Showing results 1 to 50 of 1186


Results per page: 50

		1 1	1.4	untargeted data)	Release Date	Version	Samples	Download (* : Contains raw data)
ST000001	Fatb Induction Experiment (FatBIE)	Arabidopsis thaliana	University of California, Davis	MS	2013-02-14	1	24	Uploaded data (473K)
ST000002	Intestinal Samples II pre/post transplantation	Homo sapiens	University of California, Davis	MS	2013-02-22	1	12	Uploaded data (662.3K)
ST000003	pluripotent stem cells	Mus musculus	University of California, Davis	MS	2013-02-15	1	18	Uploaded data (5.3G)*
ST000004	Lipidomics studies on NIDDK / NIST human plasma samples	Homo sapiens	LIPID MAPS	MS	2013-03-17	1	8	Uploaded data (44.3K)
	Timecourse on RAW 264.7 cells treated with Kdo2- Lipid A and compactin	Mus musculus	LIPID MAPS	MS	2013-03-22	1	116	Uploaded data (52.9K)
ST000006	White Wine Study	Vitis vinifera	University of California, Davis	MS	2013-03-23	1	102	Uploaded data (531.8K)
			University of					

Data summary by studies

\leftarrow \rightarrow (☐ metabolomicsworkbenc	h.org/data/	DRCCStudySummary.php					☆ \varTheta
ST001236	checkpoint blockade and association with therapeutic benefits - Part II	Homo sapiens	Broad Institute	MS	2019-08-27	1	244	Uploaded data (35.2G)*
ST001237	Metabolic responses to PD1 immune- checkpoint blockade and association with therapeutic benefits - Part III	Homo sapiens	Broad Institute	MS	2019-08-27	1	1221	Uploaded data (149.1G)*
ST001238 Availability (BA)	P falciparum asexual metabolomics following drug treatment (part-I)	Plasmodium falciparum	Penn State	MS		-	36	Not available
ST001239 Availability 'BA)	NMR assignment of synthetic pantothenamides (part-II)	Synthetic	Penn State	NMR	-	-	13	Not available
ST001240	Global Metabolic Analysis Trisomy 21 - Cohort 2	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	388	Uploaded data (8.6G)*
T001241	Global Metabolic Analysis Trisomy 21 - Cohort 3, Plasma	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	516	Uploaded data (6.5G)*
T001242	Global Metabolic Analysis Trisomy 21 - Cohort 3, CSF	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	400	Uploaded data (5G)*
T001243	Global Metabolic Analysis Trisomy 21 - Cohort 1	Homo sapiens	University of Colorado Denver	MS	2019-08-21	1	392	Uploaded data (7.8G)*
T001244 Available on 020-02-14)	Uropathogenic versus Urocolonizing Escherichia coli	Escherichia coli	Vanderbilt University	MS*	-	-	23	Not available
T001245	Luteal lipids regulate progesterone production and may modulate immune cell function during the estrous cycle and pregnancy	Bos taurus	University of California, Davis	MS	2019-09-10	1	70	Uploaded data (8.9M)*
T001246	TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re- modeling in human cardiomyocytes (part-I)	Homo sapiens	UC Davis	MS	2019-09-06	1	17	Uploaded data (2G)*

Study details

Summary of study ST000001

Select appropriate tab below to view additional metadata details:

All Project Study Design Treatment Collection Sample Preparation Chromatography Analysis MS

Project:

Project ID:	PR000001
Project DOI:	doi: 10.21228/M8159B
Project Title:	FatB Gene Project
Project Type:	Genotype treatment
Project Summary:	Experiment to test the consequence of a mutation at the FatB gene (At1g08510) in the wound-response of Arabidopsis
Institute:	University of California, Davis
Department:	Davis Genome Center
Laboratory:	Fiehn
Last Name:	Fiehn
First Name:	Oliver
Address:	451 E. Health Sci. Drive, Davis, CA, 95616, USA
Email:	ofiehn@ucdavis.edu
Publications:	Quality control for plant metabolomics: reporting MSI-compliant studies. DOI: 10.1111/j.1365-313X.2007.03387.x PubMed 🗗

Factors:

Summary of study ST000001

Select appropriate tab below to view additional metadata details:

All Project Study Design Treatment Collection Sample Preparation Chromatography Analysis MS

Factors:

Subject type: Plant; Subject species: Arabidopsis thaliana (Factor headings shown in green)

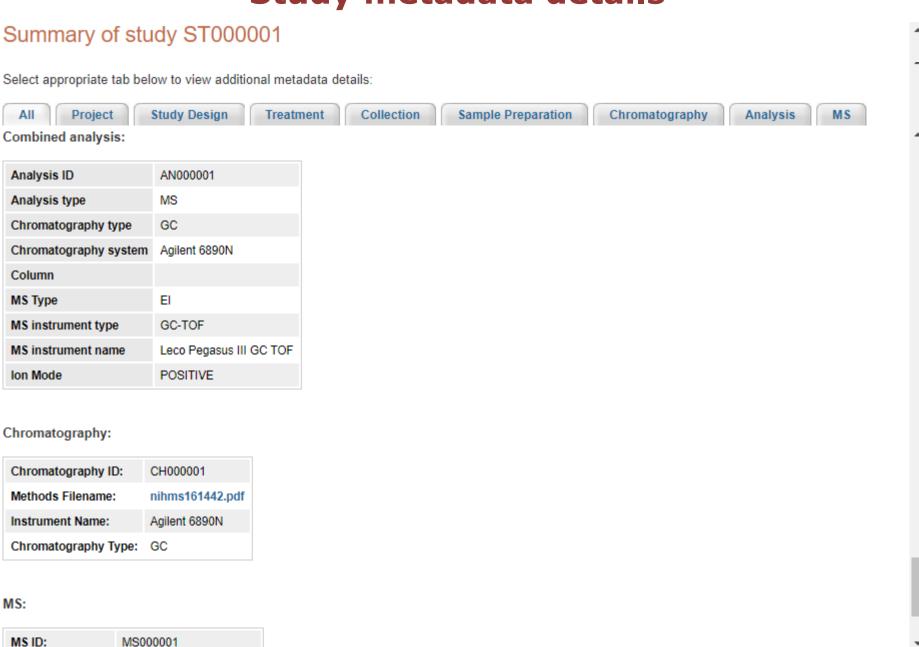
mb_sample_id	local_sample_id	Arabidopsis Genotype	Plant Wounding Treatment
SA000019	LabF_115904	fatb-ko KD; At1g08510	Control - Non-Wounded
SA000020	LabF_115909	fatb-ko KD; At1g08510	Control - Non-Wounded
SA000021	LabF_115914	fatb-ko KD; At1g08510	Control - Non-Wounded
SA000022	LabF_115919	fatb-ko KD; At1g08510	Control - Non-Wounded
SA000023	LabF_115924	fatb-ko KD; At1g08510	Control - Non-Wounded
SA000024	LabF_115929	fatb-ko KD; At1g08510	Control - Non-Wounded
SA000007	LabF_115842	fatb-ko KD; At1g08510	Wounded
SA000008	LabF_115847	fatb-ko KD; At1g08510	Wounded
SA000009	LabF_115852	fatb-ko KD; At1g08510	Wounded
SA000010	LabF_115857	fatb-ko KD; At1g08510	Wounded
SA000011	LabF_115862	fatb-ko KD; At1g08510	Wounded
SA000012	LabF_115867	fatb-ko KD; At1g08510	Wounded
SA000013	LabF_115873	Wassilewskija (Ws)	Control - Non-Wounded
SA000014	LabF_115878	Wassilewskija (Ws)	Control - Non-Wounded
SA000015	LabF_115883	Wassilewskija (Ws)	Control - Non-Wounded
SA000016	LabF_115888	Wassilewskija (Ws)	Control - Non-Wounded
SA000017	LabF_115893	Wassilewskija (Ws)	Control - Non-Wounded

Summary of study ST000001

Select appropriate tab below to view additional metadata details: Project Study Design Treatment Collection Sample Preparation Chromatography Analysis All MS Treatment: Treatment ID: TR000001 Treatment: Abiotic Treatment Wounded Route: Treatment Ten punches Dose: Treatment 3 min wounding period; 2 h response perioid before harvest Doseduration: Plant Growth Fourteen to sixteen seeds were sown on 2025 ml of sterile Murashige and Skoog basal salt mixture (MS medium) containing 0.1% w/v sucrose and 1 Support: liquid vitamin solution (Sigma, http://www.sigmaaldrich.com/) containing 15 g I)1 bacto agar (BD) in 100 100 15 mm square Falcon Petri dishes (Thermo Fisher Scientific; http://www.thermofisher.com). Seeds were arranged on the plates in a single horizontal line 1 cm from the top of the plate. Prior to sowing, seeds were sterilized by treating for 1 min at room temperature with 300 II of 50% v/v ethanol; this solution was then removed and replaced by 300 II of a solution consisting of 1% v/v Tween-20 (Thermo Fisher Scientific) and 50% v/v bleach (Clorox; http://www.clorox. com), and incubated at room temperature for 10 min. The seeds were then washed with three changes of 0.3 ml of sterile water. After sowing the seeds, the plates were wrapped using micropore tape (3 M Health Care; http://www.3m.com), and then stored horizontally for 4 days at 4 C in the dark. On the 5th day, plates were moved to the growth room, and held in a vertical position in Plexiglass holders for 12 days. Plant Growth Controlled-environment facility at Iowa State University, Nikolau laboratory. Location: Plant Plot Each genotype and replicate were grown on individual plates and placed randomly in the Plexiglass holders. Design: 24 h day at 82 micromol/m**2 s (light source Sylvania; http://www.sylvania.com), F34CW/SS/ECO/RP) Plant Light Period: Plant Day 100%, night 100% Humidity: Day 24 C, night 24 C Plant Temp: No further watering, plates remained closed Plant Watering

Summary of study ST000001

Select appropriate tab below to view additional metadata details:


All Project Study Design Treatment Collection Sample Preparation Chromatography Analysis MS

Collection:

Collection ID: CO000001
Sample Type: Plant
Volumeoramount Collected: 50 mg

Sample Preparation:

Sampleprep ID:	SP000001
Processing Storage Conditions:	Frozen tissues were kept in 2 ml round-bottomed Eppendorf tubes equipped with one 3 mm diameter steel ball, and homogenized using a Retsch (http://www.retch-us.com) ball mill for 30 sec at 25/sec
Extraction Method:	Ground tissue powder was kept in liquid nitrogen between homogenization and extraction. The extraction solvent was prepared by mixing isopropanol/ acetonitrile/water at the volume ratio 3:3:2 and degassing this mixture by directing a gentle stream of nitrogen through the solvent for 5 min. The solvent was cooled to)20 C prior to extraction. Randomly processing all samples of the study, 1 ml of cold solvent per 20 mg of ground tissue was added, vortexed for 10 sec, and shaken at 4 C for 5 min to extract metabolites and simultaneously precipitate proteins. After centrifugation at 12 800 g for 2 min, 90% of the supernatant was removed, taking are not to remove any residues from the pellet
Extract Concentration Dilution:	The supernatant was separated into two equal aliquots and concentrated to dryness in a Centrivap cold trap vacuum concentrator (http://www.labconco.com) at room temperature for 4 h
Extract Cleanup:	In order to fractionate complex lipids and waxes, the residue was re-suspended in 500 II 50% aqueous acetonitrile and centrifuged at 12 800 g for 2 min. The supernatant was transferred to a 1.5 ml Eppendorf tube and concentrated to dryness in a vacuum concentrator
Extract Storage:	Dried extracts can be kept under nitrogen at -80 C for up to 4 weeks. In the study presented here, extracts were immediately derivatized for GCTOF mass spectrometry
Organ Specification:	Rosette leaf

Study samples data

Summary of study ST000001


Perform statistical analysis | Show all samples | Show named metabolites | Download named metabolite data | Download mwTab file

Samples for study ST000001

Species: Arabidopsis thaliana (Factor headings shown in green)

mb_sample_id	Subject name	Sample name	Arabidopsis Genotype	Plant Wounding Treatment	
SA000019	-	LabF_115904	fatb-ko KD; At1g08510	Control - Non-Wounded	
SA000020	-	LabF_115909	fatb-ko KD; At1g08510	Control - Non-Wounded	
SA000021	-	LabF_115914	fatb-ko KD; At1g08510	Control - Non-Wounded	
SA000022	-	LabF_115919	fatb-ko KD; At1g08510	Control - Non-Wounded	
SA000023	-	LabF_115924	fatb-ko KD; At1g08510	Control - Non-Wounded	
SA000024	-	LabF_115929	fatb-ko KD; At1g08510	Control - Non-Wounded	
SA000007	-	LabF_115842	fatb-ko KD; At1g08510	Wounded	
SA000008	-	LabF_115847	fatb-ko KD; At1g08510	Wounded	
SA000009	-	LabF_115852	fatb-ko KD; At1g08510	Wounded	
SA000010	-	LabF_115857	fatb-ko KD; At1g08510	Wounded	
SA000011	-	LabF_115862	fatb-ko KD; At1g08510	Wounded	
SA000012	-	LabF_115867	fatb-ko KD; At1g08510	Wounded	
SA000013	-	LabF_115873	Wassilewskija (Ws)	Control - Non-Wounded	
SA000014	-	LabF_115878	Wassilewskija (Ws)	Control - Non-Wounded	
SA000015	-	LabF_115883	Wassilewskija (Ws)	Control - Non-Wounded	
SA000016	-	LabF_115888	Wassilewskija (Ws)	Control - Non-Wounded	
SA000017	-	LabF_115893	Wassilewskija (Ws)	Control - Non-Wounded	
SA000018	-	LabF_115898	Wassilewskija (Ws)	Control - Non-Wounded	
SA000001	-	LabF_115811	Wassilewskija (Ws)	Wounded	
SA000002	-	LabF_115816	Wassilewskija (Ws)	Wounded	
SA000003	-	LabF_115821	Wassilewskija (Ws)	Wounded	
SA000004	-	LabF_115826	Wassilewskija (Ws)	Wounded	
SA000005	-	LabF_115831	Wassilewskija (Ws)	Wounded	

Study sample details

Download named metabolite data for a study

Summary of study ST000001

Perform statistical analysis | Show all samples | Show named metabolites | Download named metabolite data | Download mwTab file

Download data matrix(Fatb Induction Experiment (FatBIE) GCMS positive ion mode)

Analysis	Samples	Factors	Units
GCMS positive ion mode	LabF_115904	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115909	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115914	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115919	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115924	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115929	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115842	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115847	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115852	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115857	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115862	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115867	Arabidopsis Genotype:fatb-ko KD; At1g08510 Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115873	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115878	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115883	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115888	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115893	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115898	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Control - Non-Wounded	peak height
GCMS positive ion mode	LabF_115811	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115816	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115821	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115826	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115831	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Wounded	peak height
GCMS positive ion mode	LabF_115836	Arabidopsis Genotype:Wassilewskija (Ws) Plant Wounding Treatment:Wounded	peak height

Download all metabolite data for a study

Summary of study ST000001

Perform statistical analysis | Show all samples | Show named metabolites | Download named metabolite data | Download mwTab file

Overview Upload / Manage Data Browse / Search Studies Analyze Studies Tutorials FAQ

Download all metabolite data for study ST000001

. AN000001: GCMS positive ion mode (peak height): View | Download

Download mwTab data for a study

Summary of study ST000001

Perform statistical analysis | Show all samples | Show named metabolites | Download named metabolite data | Download mwTab file

Download all data/metadata (text) in mwTab format for study ST000001

MS: GCMS positive ion mode Leco Pegasus III GC-TOF: View | Download

Named metabolites for a study of interest

Summary of study ST000001

Perform statistical analysis | Show all samples | Show named metabolites | Download named metabolite data | Download mwTab file

Analysis: GCMS positive ion mode

Show values for a selected metabolite or ratios for 2 selected metabolites

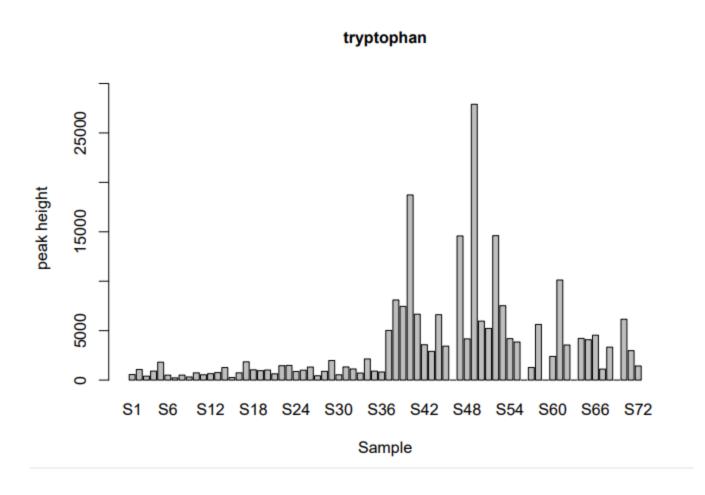
Select	Metabolite Name	Refmet Name		PubChem Compound_ID	Kegg Id	Retention time/index		Other Id	Other Id Type
	1,2,4-benzenetriol	1,2,4-benzenetriol	ME000097	10787 ₺	C02814 &	522741	239	205673	BinBase
	1-monostearin	MG(18:0/0:0/0:0)	ME000096	107036 ₺	D01947 &	959625	399	202835	BinBase
	2-hydroxyvaleric acid	DL-2-hydroxy valeric acid	ME000098	98009 🗗	-	310750	131	218773	BinBase
	3-phosphoglycerate	3-Phosphoglyceric acid	ME000095	724 🗳	C00597 🗗	611619	299	217821	BinBase
	5-hydroxynorvaline NIST	-	ME001834	95562 ₺	-	494838	142	200384	BinBase
	adenosine	Adenosine	ME000092	60961 ₺	C00212 &	917818	236	211944	BinBase
	adenosine-5-monophosphate	AMP	ME000091	6083 &	C00020 &	1040943	169	213958	BinBase
	adipic acid	Adipic acid	ME000090	196 🗳	C06104 &	475399	111	218815	BinBase
	agmatine	Agmatine	ME000089	199 🗗	C00179 &	587051	157	212007	BinBase
	alanine	Alanine	ME000088	5950 ਫ਼ੂਸ	C00041 &	243537	116	199651	BinBase
	alpha ketoglutaric acid	Oxoglutaric acid	ME000087	51 🚱	C00026 &	507734	198	200425	BinBase
	arabinose	Arabinose	ME000086	7044039 🗗	C00216 &	546892	217	202065	BinBase
	arginine + ornithine		ME000085	6322 ₺₽	C00062 &	619420	142	199796	BinBase

Analyze metabolite of interest

Par graph of values for each factor level

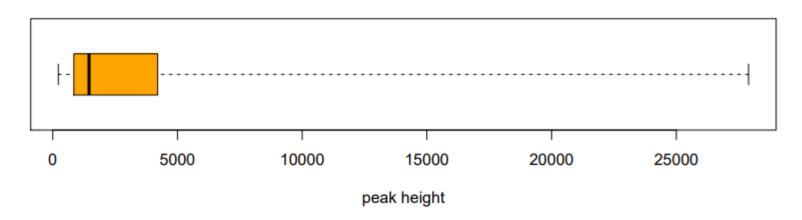
View data for a selected factor

tryptophan values for \$T000014 (Units: peak height)


Par graph by eample

Run ANOVA on this analyte | Run t-test on this analyte | Calculate z-scores for this analyte

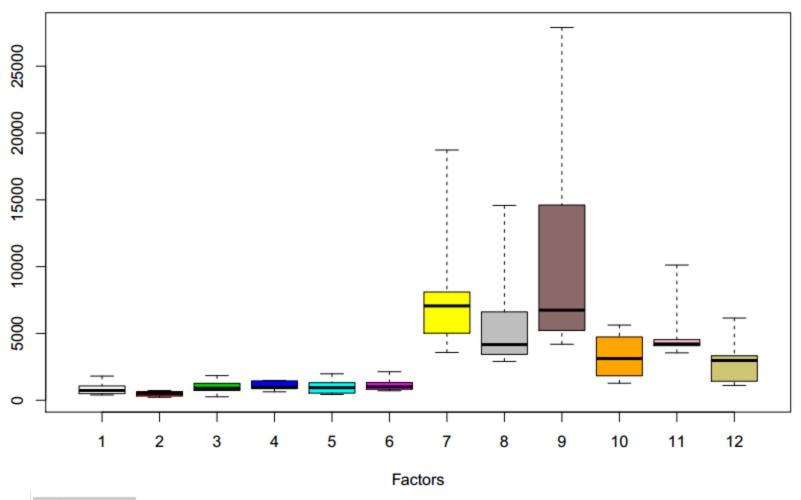
Bar graph by sample		Boxplot	Boxplot	Bar graph of values for each factor level	View data for a selected factor		
Bar gra	ph (samples)	All samples	By factor	Display bar graph for each factor level	Factor: ▼		
Sample	Tryptophan	Factors			Units		
103879	558	Compartment: cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103884	1071	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103889	395	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103894	907	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103899	1810	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103904	497	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
104003	223	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 9.6 uM	peak height		
104008	502	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 9.6 uM	peak height		
104013	313	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 9.6 uM	peak height		
104018	729	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 9.6 uM	peak height		
104023	536	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 9.6 uM	peak height		
104028	647	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitic acid 9.6 uM	peak height		
104127	756	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitoyl carnitine 9.6 uM	1 peak height		
104132	1268	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitoyl carnitine 9.6 uM	1 peak height		
104137	262	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitoyl carnitine 9.6 uM	1 peak height		
104142	732	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitoyl carnitine 9.6 uM	1 peak height		
104147	1846	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitoyl carnitine 9.6 uM	1 peak height		
104152	1038	Compartment:cytoso	l Minutes:0 S	keletal Muscle Treatment:palmitoyl carnitine 9.6 uM	1 peak height		
103941	952	Compartment:cytoso	Minutes:20 \$	Skeletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103946	1018	Compartment:cytoso	Minutes:20 \$	Skeletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103951	633	Compartment:cytoso	Minutes:20 \$	Skeletal Muscle Treatment:palmitic acid 2.4 uM	peak height		
103956	1454	Compartment:cytoso	Minutes:20 \$	Skeletal Muscle Treatment:palmitic acid 2.4 uM	peak height		


- Bar graph of sample measurements for that metabolite
- Box-and-whisker plot of measurement ranges for the metabolite
- Bar graph of mean values for each factor level
- Tabular and graphical display by factor/factor level of interest
- Two-way ANOVA analysis of data for a metabolite
- T-test analysis of data for a metabolite
- Z-score analysis of data for a metabolite

Bar graph of sample measurements for that metabolite

Box-and-whisker plot of measurement ranges for the metabolite

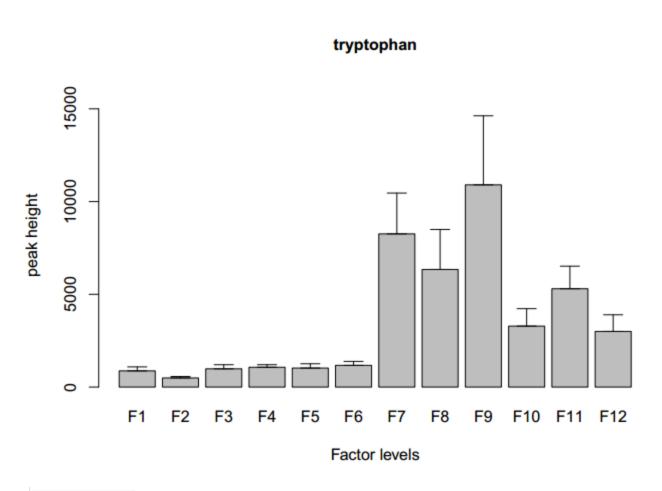
Box and whisker plot: tryptophan

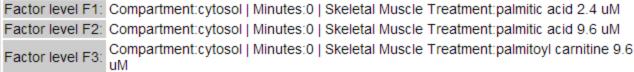


tryptophan:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 223 844 1454 3507 4204 27896 5

Box-and-whisker plot of measurement ranges for the metabolite


Box and whisker plot: tryptophan



Factor level F1: Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM
Factor level F2: Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 9.6 uM

Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitoyl carnitine 9.6

Bar graph of mean values for each factor level

View metabolite data for a selected factor (from pulldown menu)

tryptophan values for ST000014 (Units: peak height) Run ANOVA on this analyte | Run t-test on this analyte | Calculate z-scores for this analyte Bar graph by sample Boxplot Boxplot Bar graph of values for each factor level View data for a selected factor All samples Bar graph (samples) By factor Display bar graph for each factor level Factor: Compartment Tryptophan Sample Factors Minutes Skeletal Muscle Treatment Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM 103879 558

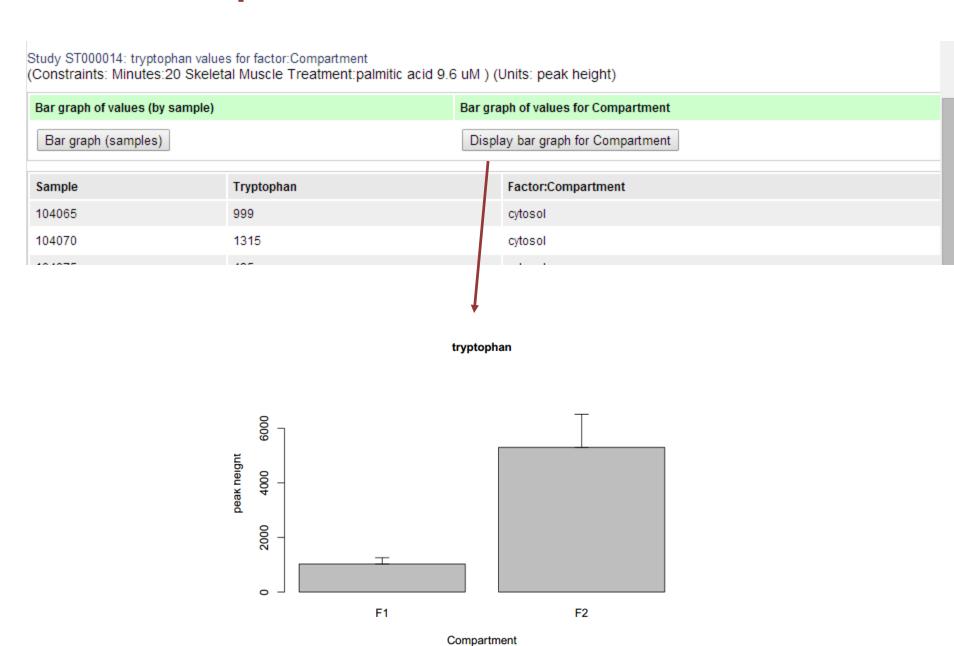
New menu appear for each additional factor (constrain these as needed)

peak heigh

Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM

Bar graph by sample Boxplot			Boxplot	Bar graph of values for each factor level	View data for a selected fact	tor			
Bar graph (samples) All samples By factor Display bar graph for each factor level Factor: Compartment									
Apply additional constraints Minutes: 20 ▼ Skeletal Muscle Treatment: palmitic acid 9.6 uM ▼ Show data table									
Sample	Tryptophan	Factors				Units			
103879 558 Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM									

User-defined data subset


Study ST000014: tryptophan values for factor:Compartment (Constraints: Minutes:20 Skeletal Muscle Treatment:palmitic acid 9.6 uM) (Units: peak height)

103884

1071

Bar graph of values (by sample)		Bar graph of values for Compartment
Bar graph (samples)	Display bar graph for Compartment	
Sample	Tryptophan	Factor:Compartment
104065	999	cytosol
104070	1215	cutocol

Examine a specific factor for a metabolite of interest

Two-way ANOVA analysis of data for a metabolite

ANOVA parameters for tryptophan in Study ST000014

This analysis uses the 'anova' & function of the R statistics environment

Please specify the first order terms:

Compartment:	
Minutes:	•
Skeletal_Muscle_Treatment:	*

Please specify the second order terms:

	Compartment	Minutes	Skeletal_Muscle_Treatment
Compartment	-		
Minutes	-	-	
Skeletal_Muscle_Treatment	-	-	-

Submit

ANOVA results for tryptophan in Study ST000014

ANALYTE	Compartment	Minutes	Skeletal_Muscle_Treatment
tryptophan	3.626E-6	1.127E-2	6.128E-1

(Green: p value<=0.05)

T-test analysis of data for a metabolite

T-test on tryptophan

Calculate all t-test p-values

Select	Factor
	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
	Compartment:cytosol Minutes:20 Skeletal Muscle Treatment:palmitic acid 2.4 uM
	Compartment:cytosol Minutes:20 Skeletal Muscle Treatment:palmitic acid 9.6 uM
	Compartment:cytosol Minutes:20 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
	Compartment:mito Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
	Compartment:mito Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
	Compartment:mito Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
	Compartment:mito Minutes:20 Skeletal Muscle Treatment:palmitic acid 2.4 uM
	Compartment:mito Minutes:20 Skeletal Muscle Treatment:palmitic acid 9.6 uM
	Compartment:mito Minutes:20 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM

Calculate t-test p-value for 2 selected conditions | Treat variances as equal: TRUE ▼

Perform t-test on pairs of factor levels or across all possible combinations

T-test on tryptophan (2-tailed test. Assumes equal variances)

Factors	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12
f1	1.27E- 1	7.27E- 1	4.62E- 1	6.42E- 1	3.50E- 1	7.48E- 3	2.11E- 2	2.27E- 2	1.59E- 2	3.37E- 3	3.29E- 2
f2	-	6.23E- 2	4.55E- 3	5.44E- 2	1.37E- 2	5.47E- 3	1.49E- 2	1.89E- 2	5.87E- 3	1.79E- 3	1.32E- 2
f3	-	-	7.51E- 1	9.01E- 1	5.57E- 1	8.15E- 3	2.32E- 2	2.39E- 2	1.99E- 2	3.95E- 3	4.11E- 2
f4	-	-	-	8.74E- 1	6.96E- 1	8.55E- 3	2.44E- 2	2.47E- 2	1.98E- 2	4.07E- 3	4.38E- 2
f5	-	-	-	-	6.53E- 1	8.43E- 3	2.41E- 2	2.44E- 2	2.21E- 2	4.23E- 3	4.52E- 2
f6	-	-	-	-	-	9.39E- 3	2.70E- 2	2.60E- 2	2.82E- 2	5.05E- 3	5.84E- 2
f7	-	-	-	-	-	-	5.53E- 1	5.54E- 1	1.19E- 1	2.97E- 1	7.05E- 2
f8	-	-	-	-	-	-	_	3.42E- 1	2.75E- 1	6.86E- 1	1.90E- 1
f9	-	-	-	-	-	-	-	-	1.45E- 1	2.21E- 1	9.22E- 2
f10	-	-	-	-	-			T 4			Ω 33F_

T-test 2-tailed with equal variances

Condition1:Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM Condition2:Compartment:mito | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM

f1	Compartment:cytosol Minutes:0 Ske
f2	Compartment:cytosol Minutes:0 Ske
#O	Compartment: autopal I Minutes: 0 L Cka

f11

Calculate z-scores for all samples for a metabolite of interest

Z-scores and measurements for tryptophan in Study ST000014 (Units: peak height)

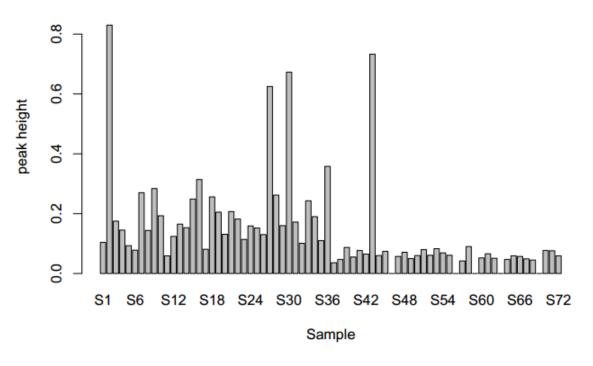
Mean: 3507.090 Sample standard deviation: 4731.614

Sample	Value	z-score	Factors
103879	558	-0.623	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
103884	1071	-0.515	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
103889	395	-0.658	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
103894	907	-0.550	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
103899	1810	-0.359	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
103904	497	-0.636	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 2.4 uM
104003	223	-0.694	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
104008	502	-0.635	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
104013	313	-0.675	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
104018	729	-0.587	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
104023	536	-0.628	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
104028	647	-0.604	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitic acid 9.6 uM
104127	756	-0.581	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
104132	1268	-0.473	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
104137	262	-0.686	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
104142	732	-0.586	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
104147	1846	-0.351	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
104152	1038	-0.522	Compartment:cytosol Minutes:0 Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM
103941	952	-0.540	Compartment:cytosol Minutes:20 Skeletal Muscle Treatment:palmitic acid 2.4 uM
102046	1010	U EGG	Compartment: eutocol I Minutec: 20 I Skoletal Mucele Treatment: palmitic acid 2.4 uM

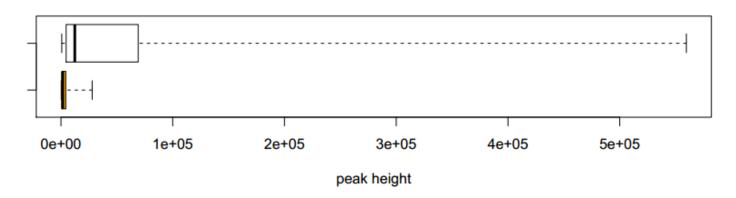
Analysis tools for 2 metabolites of interest

Note: Some different plotting/statistics items are displayed when 2 metabolites are selected (as opposed to a single metabolite)

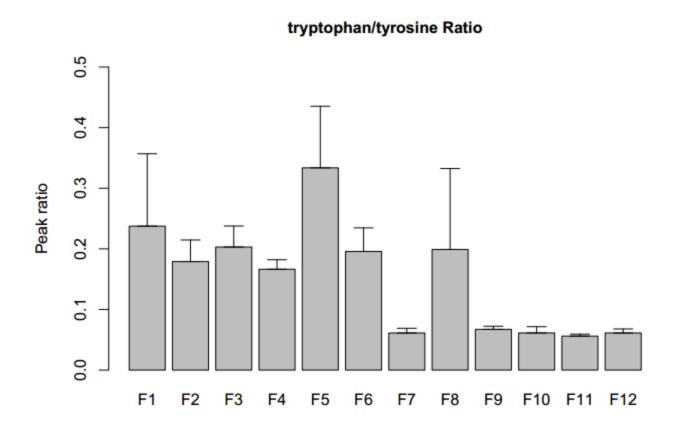
Bar graph of sample ratios for the 2 metabolites


tryptophan/tyrosine Ratio values for ST000014 (Units: peak height)

- Box-and-whisker plot of measurement ranges for the metabolites
- Bar graph of mean ratios for each factor level for the metabolites (A/B)
- Bar graph of mean inverse ratios for each factor level for the metabolites (B/A)
- Tabular and graphical display by factor/factor level of interest

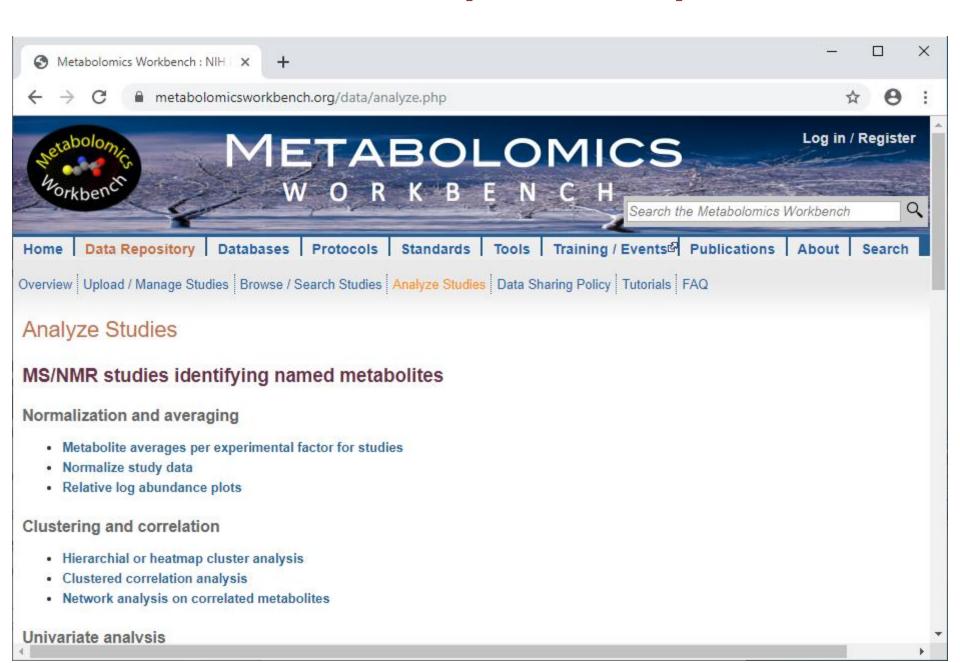

Calculate correlation coefficient for these 2 analytes Bar graph of ratios for each Bar graph of inverse ratios for each Bar graph by sample Boxplot of 2 ranges View ratios for a selected factor factor level factor level Bar graph (samples) Box and whisker plot Bar graph (factor level) Bar graph (factor level) inverse Factor: • Tryptophan/tyrosine Ratio Factors Sample Tryptophan Tyrosine Units 103879 558.0000 0.1043 5351.0000 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM peak height 103884 1071.0000 1291.0000 0.8296 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM peak height 103889 395.0000 2258.0000 0.1749 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM peak height 103894 907.0000 6243.0000 0.1453 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM peak height 103899 1810.0000 19460.0000 0.0930 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM peak height 103904 497.0000 6332.0000 0.0785 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 2.4 uM peak height 0.2700 104003 223.0000 826.0000 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 9.6 uM peak height 104008 502.0000 3476.0000 0.1444 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 9.6 uM peak height 104013 313.0000 1104.0000 0.2835 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 9.6 uM peak height 104018 729.0000 3772.0000 0.1933 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 9.6 uM peak height 104023 536.0000 9033.0000 0.0593 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitic acid 9.6 uM peak height 104028 647.0000 0.1235 5238.0000 Compartment: cvtosol | Minutes: 0 | Skeletal Muscle Treatment: palmitic acid 9.6 uM peak height 104127 756.0000 Compartment:cytosol | Minutes:0 | Skeletal Muscle Treatment:palmitoyl carnitine 9.6 uM peak height 4592.0000 0.1646

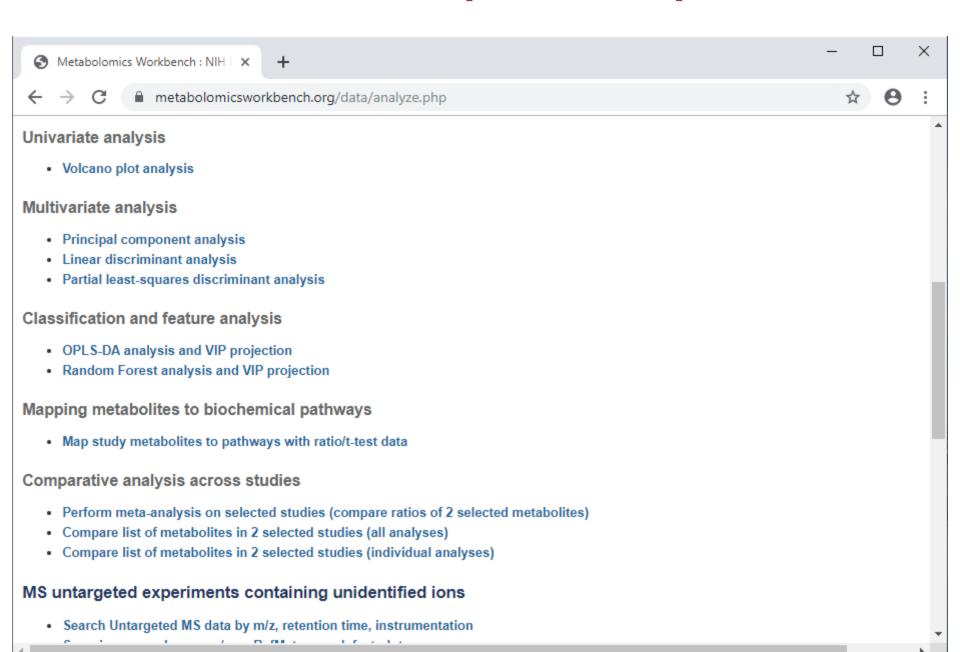
Analysis tools for 2 metabolites of interest

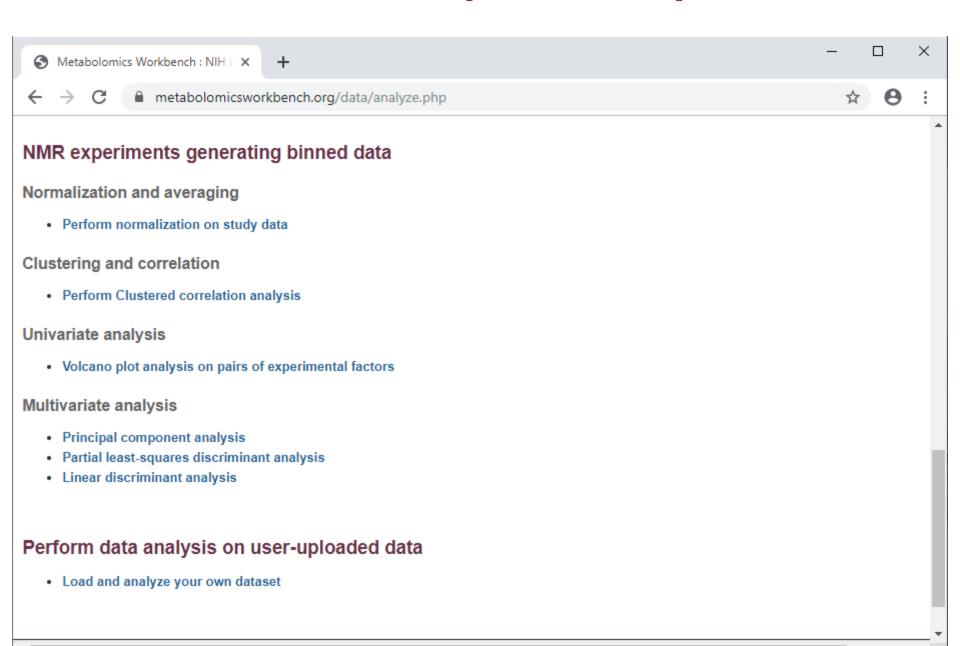

tryptophan/tyrosine Ratio

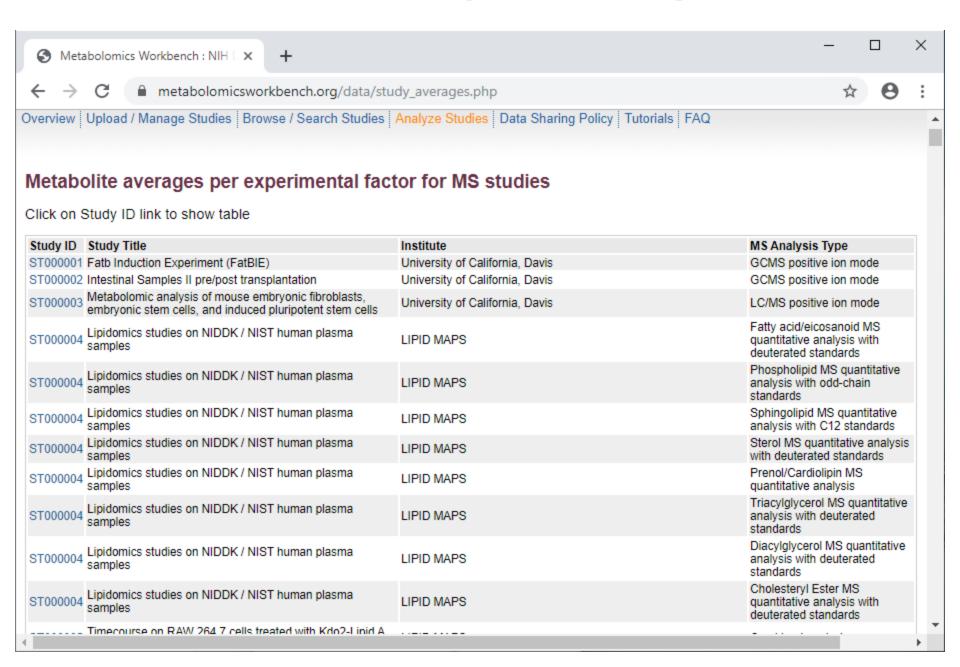
Box and whisker plot: tryptophan (bottom), tyrosine (top)

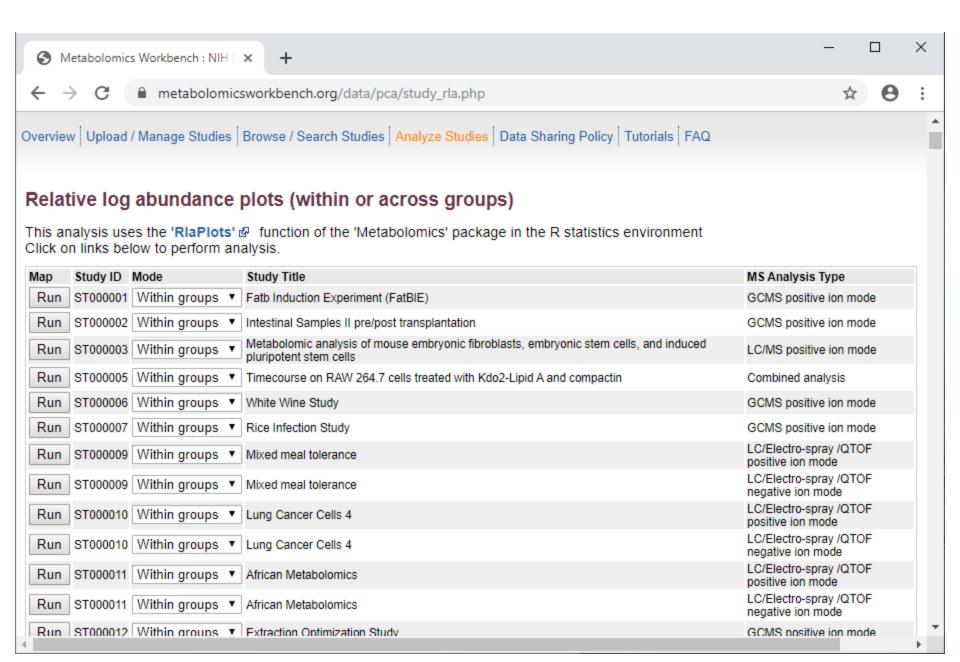
Analysis tools for 2 metabolites of interest

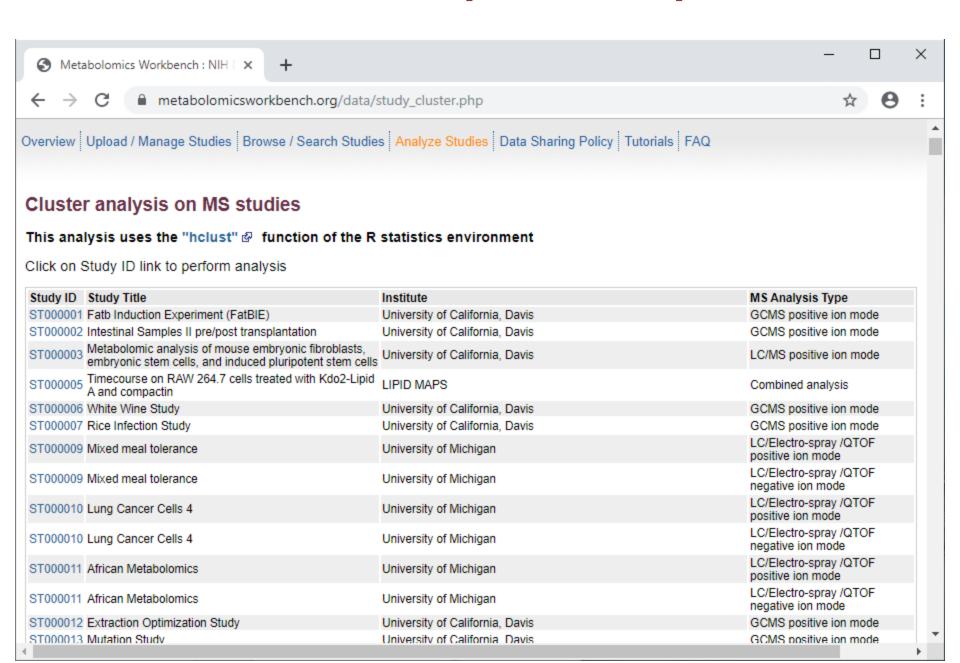

Overview

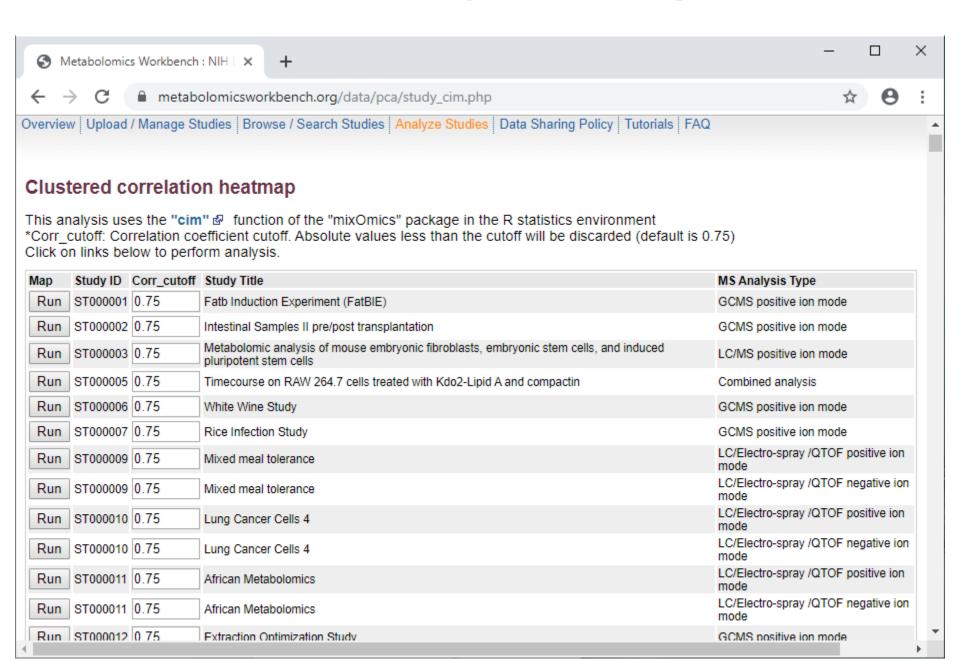

Metabolomics workbench

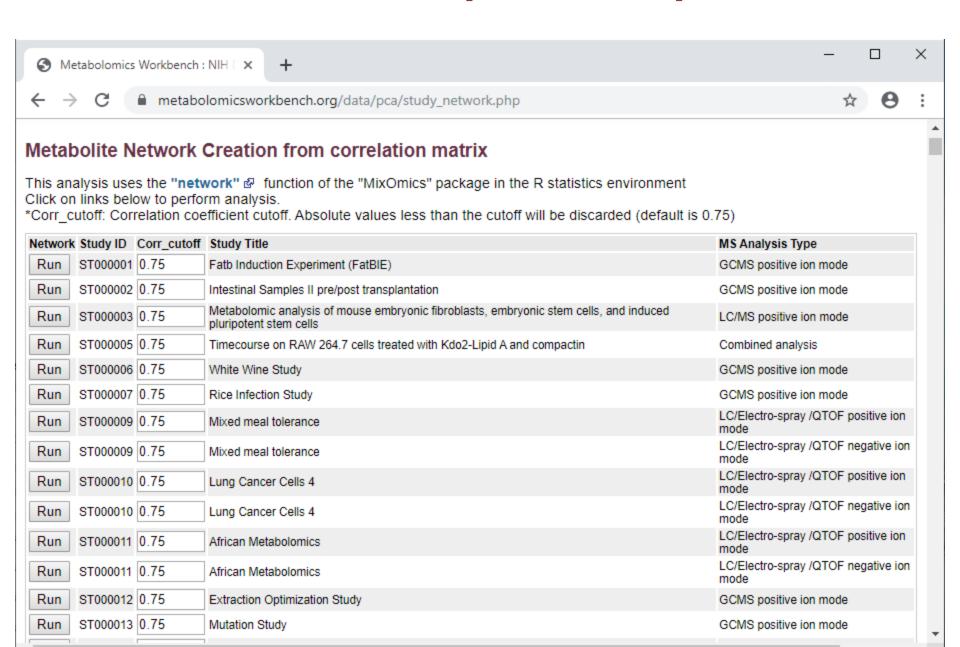

- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases

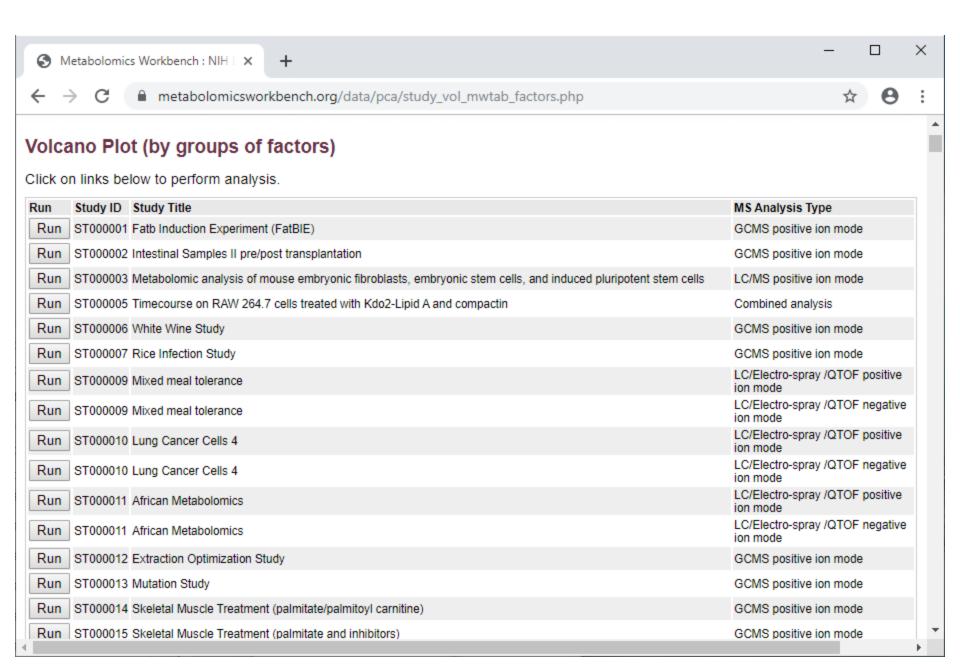

Protocols

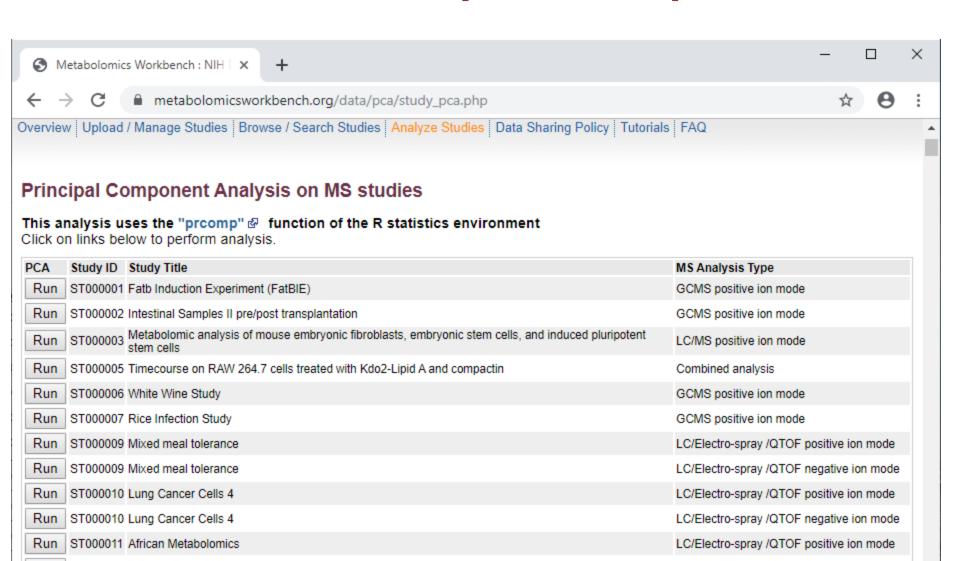

Standards











Run

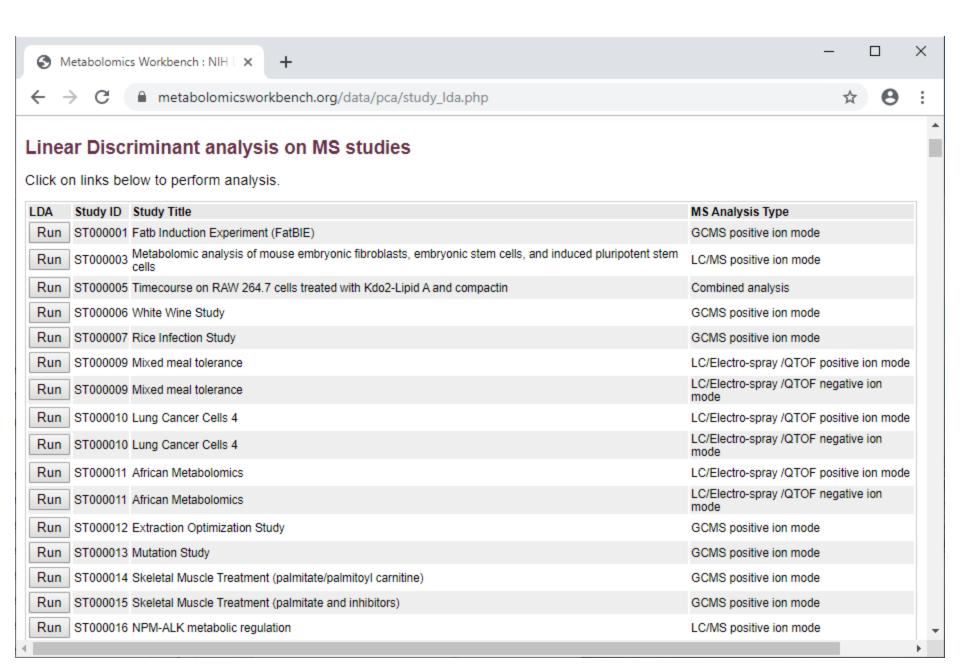
Run

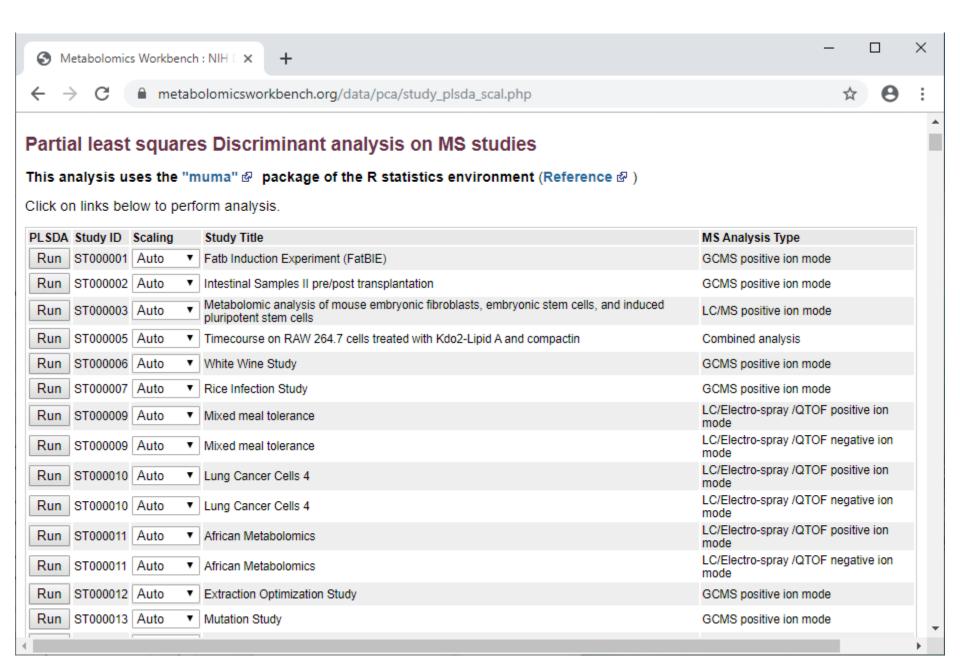
Run

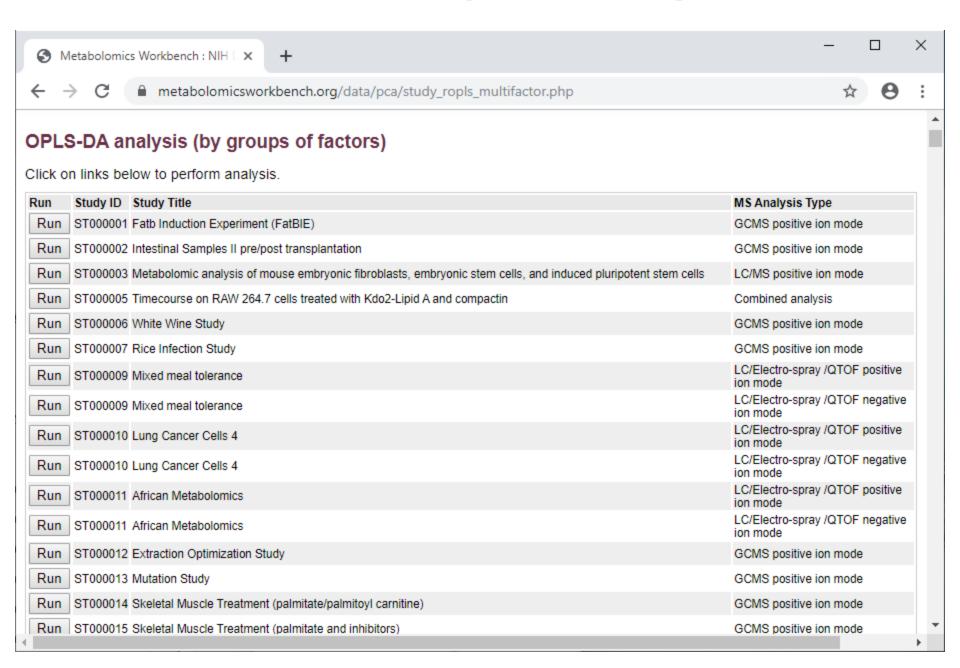
ST000011 African Metabolomics

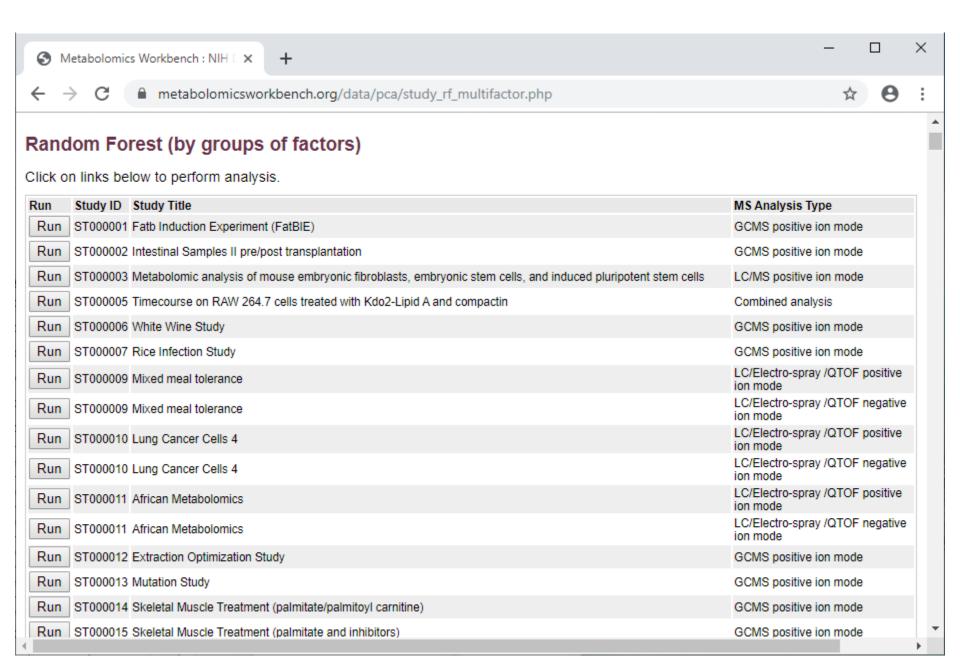
ST000013 Mutation Study

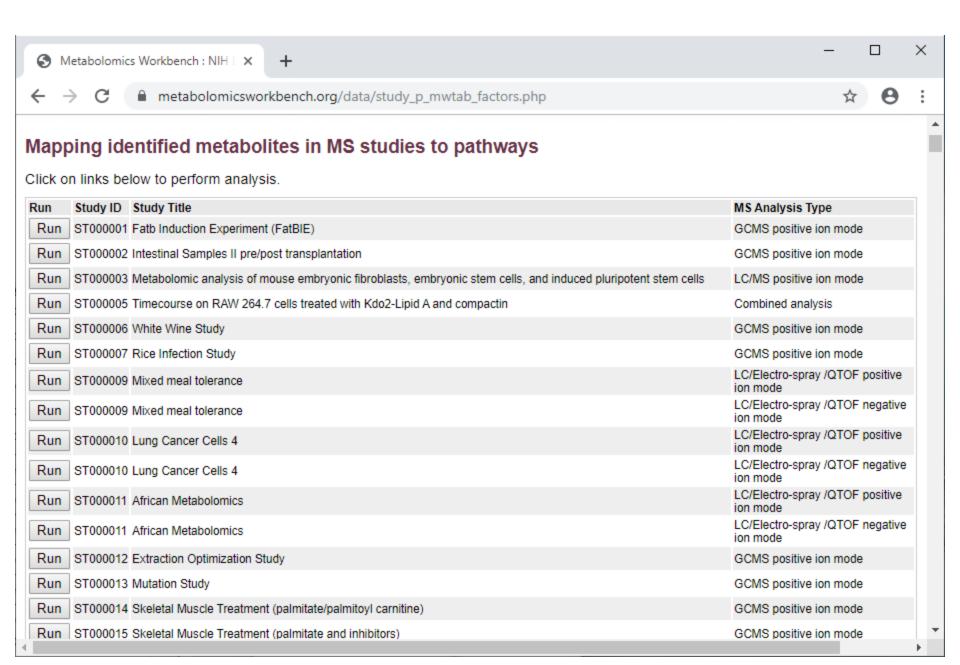
ST000012 Extraction Optimization Study

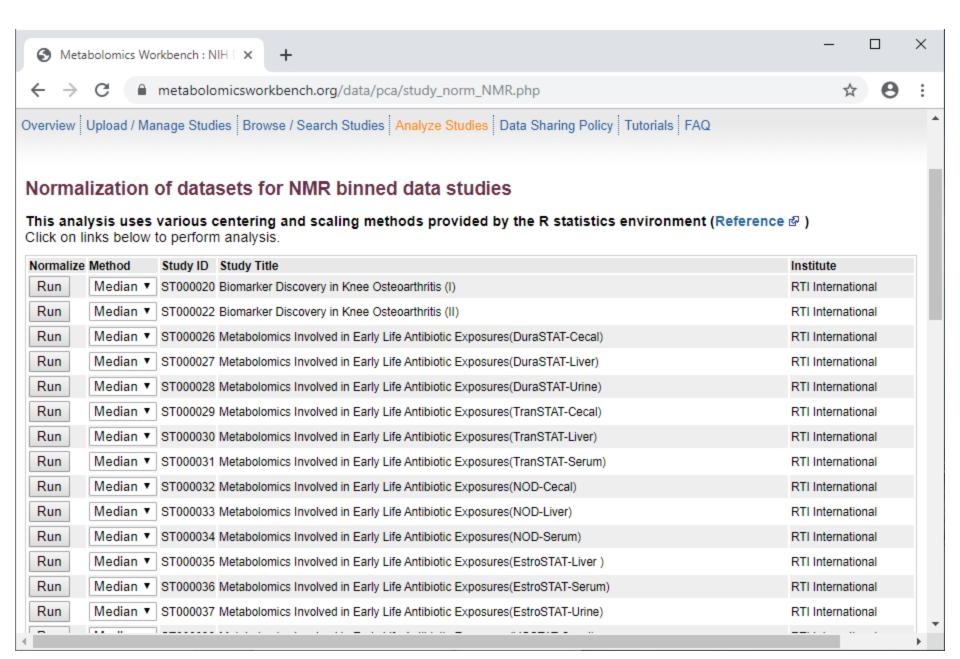

CT000044 Ckalatal Musala Treatment (nalmitate/nalmitaul agenitina)

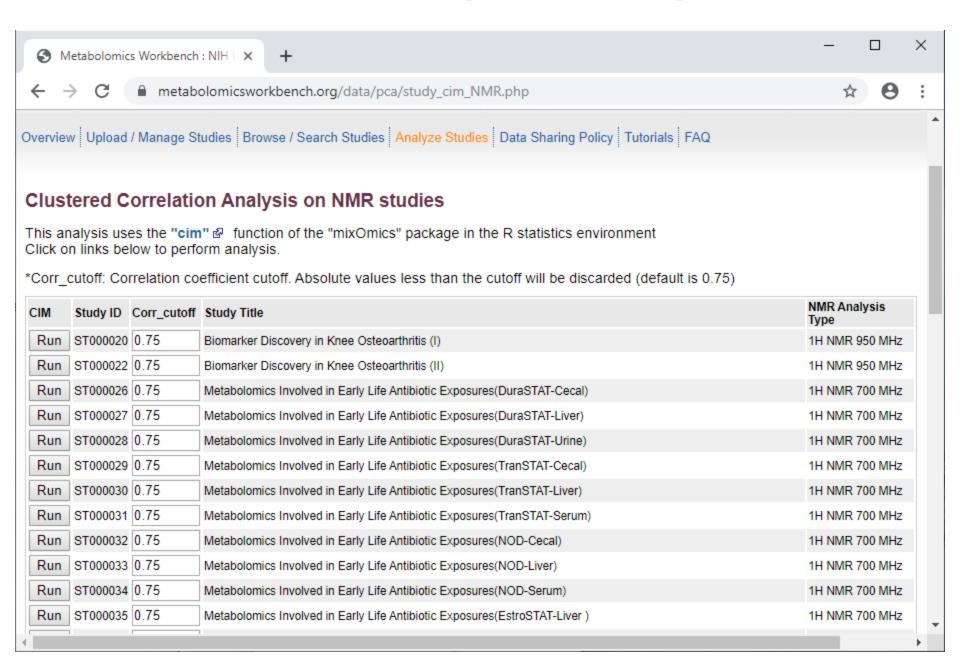

LC/Electro-spray /QTOF negative ion mode

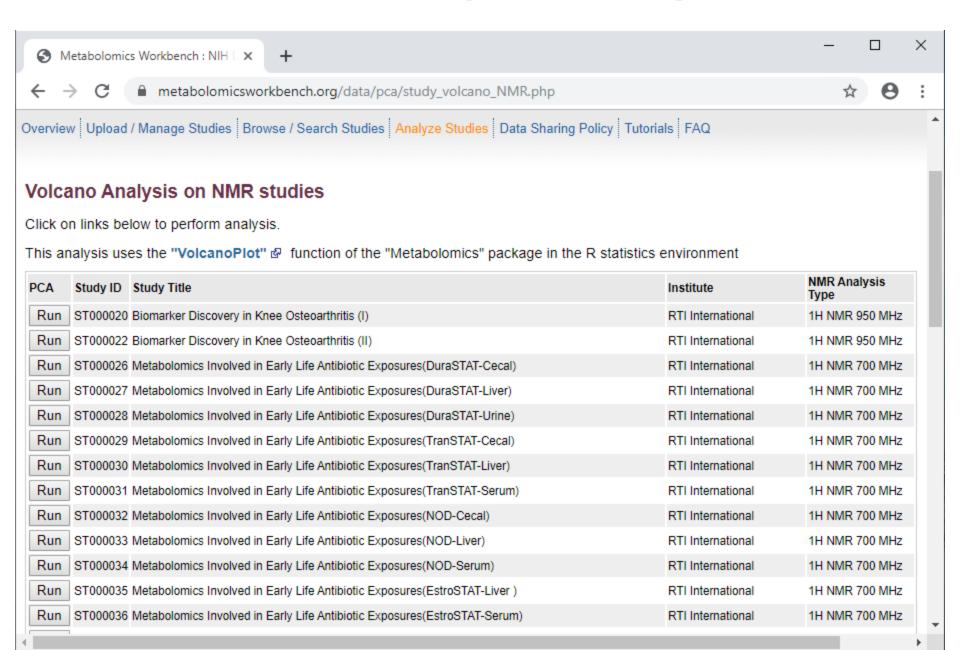

GCMS positive ion mode

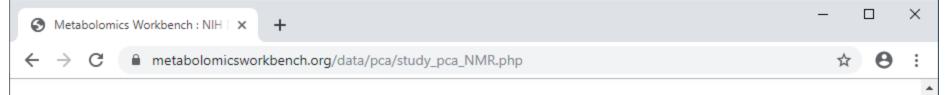

GCMS positive ion mode


CCMC positive ion mode

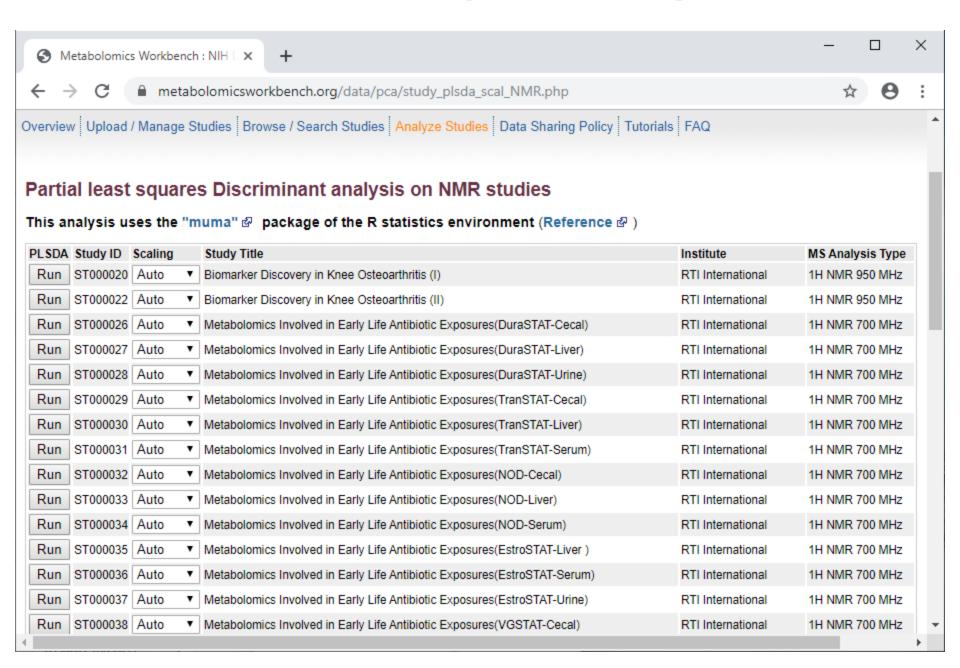


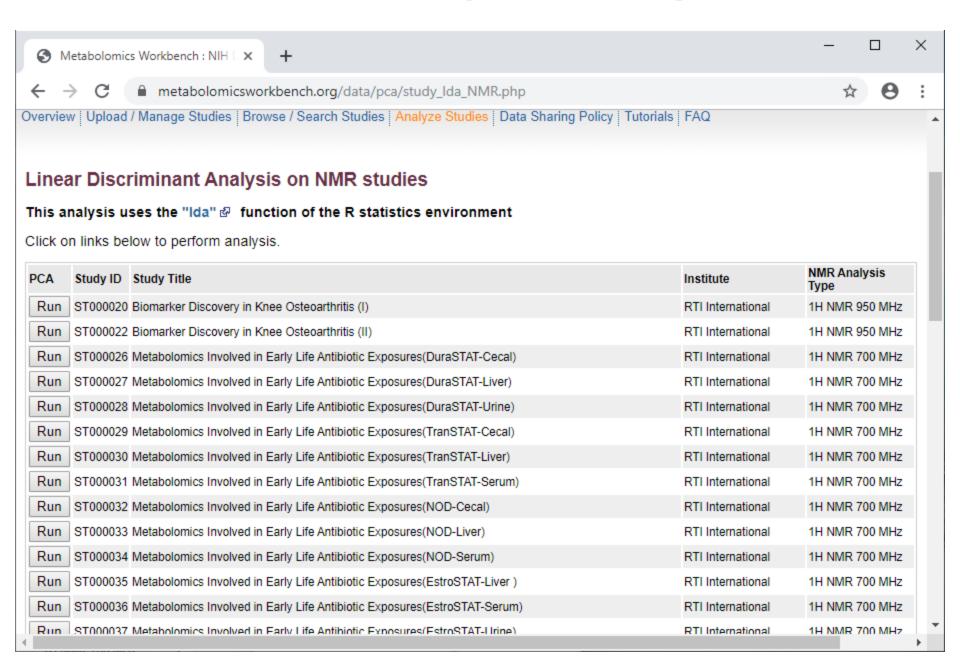




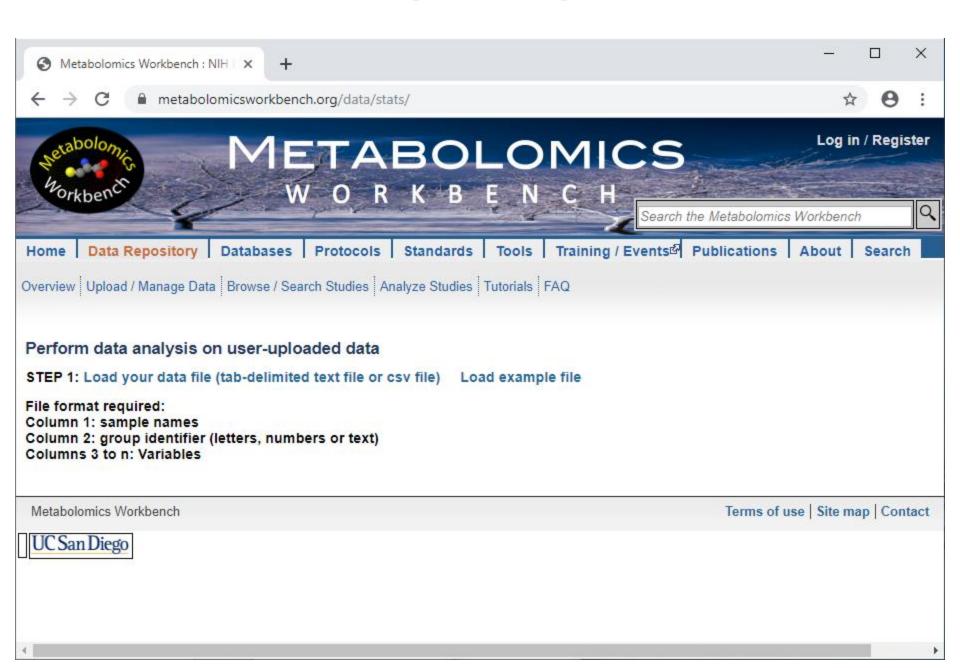

Tools for comparative analysis across studies

Overview Upload / Manage Studies Browse / Search Studies Analyze Studies Data Sharing Policy Tutorials FAQ
View metabolite ratios across different studies
Study ID's (comma or space separated):
ST000402 ST000397 ST000395 Start
Overview Upload / Manage Studies Browse / Search Studies Analyze Studies Data Sharing Policy Tutorials FAQ
Compare 2 individual studies:
ST000001: Fatb Induction Experiment (FatBIE) ▼
ST000001: Fatb Induction Experiment (FatBIE) ▼
Submit Reset
Overview Upload / Manage Studies Browse / Search Studies Analyze Studies Data Sharing Policy Tutorials FAQ
Compare 2 individual analyses:
ST000001 (AN000001): Fatb Induction Experiment (FatBIE) (GCMS positive ion mode) ▼
ST000001 (AN000001): Fatb Induction Experiment (FatBIE) (GCMS positive ion mode) ▼
Submit Reset


Principal Component Analysis on NMR studies


This analysis uses the "prcomp"

function of the R statistics environment


Click on links below to perform analysis.

PCA	Study ID	Study Title	Institute	NMR Analysis Type
Run	ST000020	Biomarker Discovery in Knee Osteoarthritis (I)	RTI International	1H NMR 950 MHz
Run	ST000022	Biomarker Discovery in Knee Osteoarthritis (II)	RTI International	1H NMR 950 MHz
Run	ST000026	Metabolomics Involved in Early Life Antibiotic Exposures(DuraSTAT-Cecal)	RTI International	1H NMR 700 MHz
Run	ST000027	Metabolomics Involved in Early Life Antibiotic Exposures(DuraSTAT-Liver)	RTI International	1H NMR 700 MHz
Run	ST000028	Metabolomics Involved in Early Life Antibiotic Exposures(DuraSTAT-Urine)	RTI International	1H NMR 700 MHz
Run	ST000029	Metabolomics Involved in Early Life Antibiotic Exposures(TranSTAT-Cecal)	RTI International	1H NMR 700 MHz
Run	ST000030	Metabolomics Involved in Early Life Antibiotic Exposures(TranSTAT-Liver)	RTI International	1H NMR 700 MHz
Run	ST000031	Metabolomics Involved in Early Life Antibiotic Exposures(TranSTAT-Serum)	RTI International	1H NMR 700 MHz
Run	ST000032	Metabolomics Involved in Early Life Antibiotic Exposures(NOD-Cecal)	RTI International	1H NMR 700 MHz
Run	ST000033	Metabolomics Involved in Early Life Antibiotic Exposures(NOD-Liver)	RTI International	1H NMR 700 MHz
Run	ST000034	Metabolomics Involved in Early Life Antibiotic Exposures(NOD-Serum)	RTI International	1H NMR 700 MHz
Run	ST000035	Metabolomics Involved in Early Life Antibiotic Exposures(EstroSTAT-Liver)	RTI International	1H NMR 700 MHz
Run	ST000036	Metabolomics Involved in Early Life Antibiotic Exposures(EstroSTAT-Serum)	RTI International	1H NMR 700 MHz
Run	ST000037	Metabolomics Involved in Early Life Antibiotic Exposures(EstroSTAT-Urine)	RTI International	1H NMR 700 MHz
Run	ST000038	Metabolomics Involved in Early Life Antibiotic Exposures(VGSTAT-Cecal)	RTI International	1H NMR 700 MHz

Tools for analysis of uploaded data

Overview

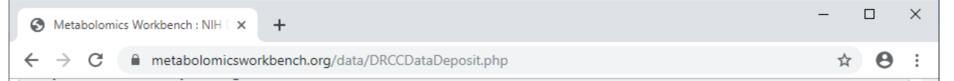
Metabolomics workbench

- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases

Protocols

Standards

Upload and manage data


Upload and Manage Experimental Data and Metadata

The National Metabolomics Data Repository (NMDR) is now accepting metabolomics data for small and large studies on cells, tissues and organisms via the Metabolomics Workbench. We can accommodate a variety of metabolite analyses, including, but not limited to MS and NMR. In order to ensure reproducibility and interoperable use of data, we require experimental metadata (see **tutorials**) to be deposited along with the metabolite measurements. Processed data (measurements) maybe in the form of quantitated metabolite concentrations, MS peak height/area values, LC retention times, NMR binned areas, etc. Raw data in the form of MS and NMR binary files and associated parameter files may also be uploaded. We accept data from both targeted and untargeted studies. The Metabolomics Workbench also provides a suite of tools for analysis and visualization of the **data**. Step-by-step instructions for the whole process are provided below.

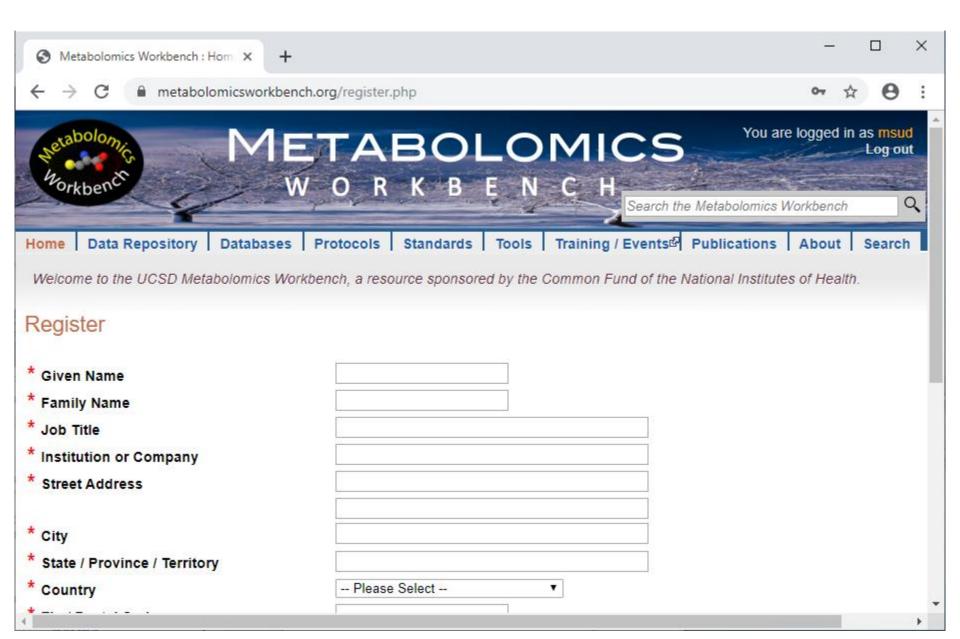
Requirements for depositing data via the Metabolomics Workbench:

- 1. Register; check the box corresponding to "I wish to be authorized to upload data" '.
- E-mail us for authorization (help@metabolomicsworkbench.org).
 - We will contact you after we have reviewed your request for authorization to upload data (typically w/in 5 business days).
- 3. Log in.
- 4. The use of the common metabolite names in the RefMet database is strongly encouraged in order to be able to compare and contrast metabolite data across different experiments and studies. For your convenience an online tool is available to map your current metabolite identifications (where possible) to the corresponding RefMet names.
- Use the 'New Data Upload' tab to (a) register your study, (b) submit metadata and processed data and (c) upload raw data/supplementary material.
 (Please read the step-by-step tutorial). Please indicate the date when the study may be made available to the public.

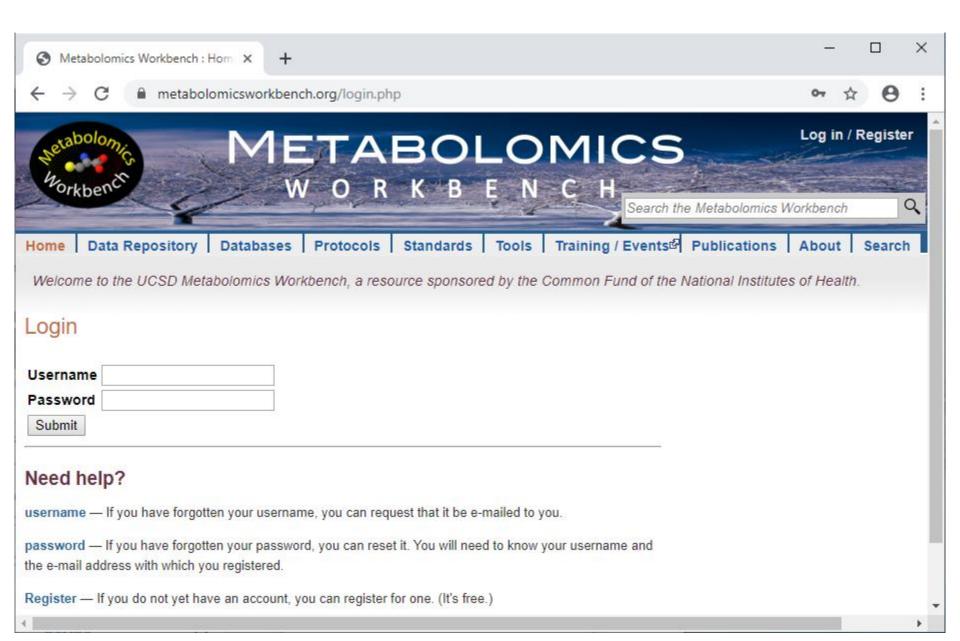
Upload and manage data

- Register; check the box corresponding to "I wish to be authorized to upload data" '.
- 2. E-mail us for authorization (help@metabolomicsworkbench.org).
 - We will contact you after we have reviewed your request for authorization to upload data (typically w/in 5 business days).
- 3. Log in.
- 4. The use of the common metabolite names in the RefMet database is *strongly encouraged* in order to be able to compare and contrast metabolite data across different experiments and studies. For your convenience an **online tool** is available to map your current metabolite identifications (where possible) to the corresponding RefMet names.
- 5. Use the 'New Data Upload' tab to (a) register your study, (b) submit metadata and processed data and (c) upload raw data/supplementary material. (Please read the step-by-step tutorial). Please indicate the date when the study may be made available to the public.
- 6. E-mail us for additional assistance (help@metabolomicsworkbench.org), if needed.

Note: The older Excel-based submission method has been permanently retired. Please use the online submission method (Step 5).


The compressed (zip, 7z, gz) data file is selected and uploaded to the NMDR FTP server through a FTP client. A variety of free and commercial standalone file transfer clients exist to upload large data files directly to the FTP servers: FileZilla ② , WinSCP ② , download managers ② , etc. The usage of FileZilla is recommended for uploading data to the NMDR.

Accessing and reviewing deposited data/metadata on the Metabolomics Workbench


After the NMDR has processed your dataset (typically less than 30 days), you will be notified and may review it at the following private website: http://dev.metabolomicsworkbench.org:22222/data/browse.php 전

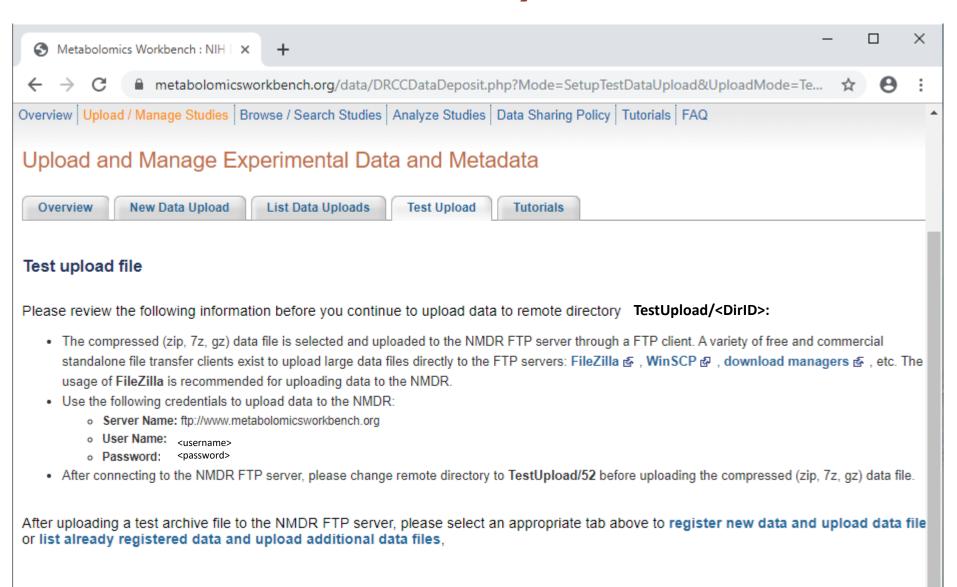
In order to browse and review data and metadata from experimental projects and studies submitted by your institution (or other institutions for which you have permission to view), you will be prompted to login with your Metabolomics Workbench username and password. After you have reviewed your dataset and communicated with the NMDR, the study will be placed on the public Metabolomics Workbench website (subject to its embargo date, if any).

Register to upload data (First time user)

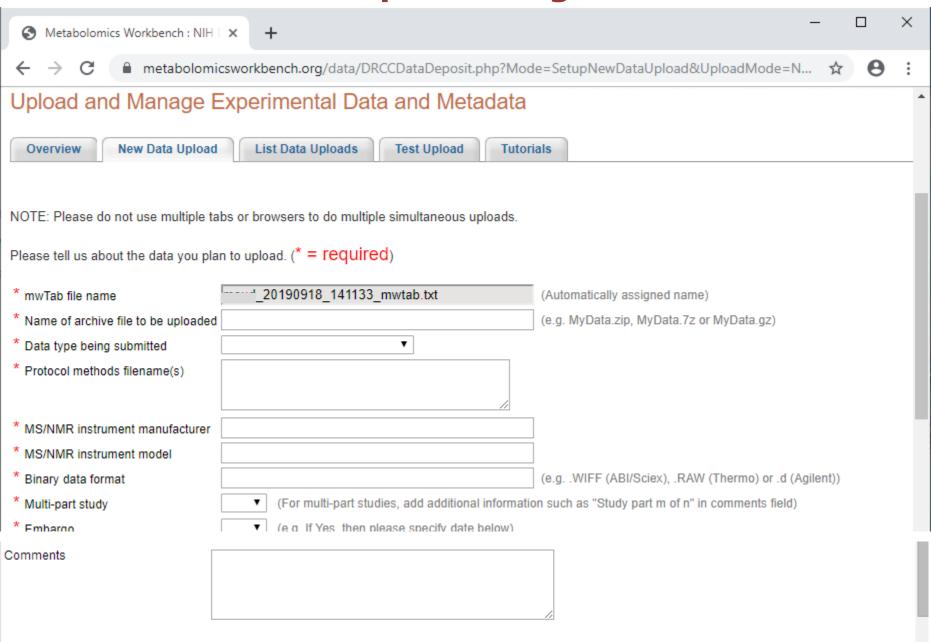
Login to upload data

Upload and manage data (After login)

Upload and Manage Experimental Data and Metadata


Overview New Data Upload List Data Uploads Test Upload Tutorials

The National Metabolomics Data Repository (NMDR) is now accepting metabolomics data for small and large studies on cells, tissues and organisms via the Metabolomics Workbench. We can accommodate a variety of metabolite analyses, including, but not limited to MS and NMR. In order to ensure reproducibility and interoperable use of data, we require experimental metadata (see tutorials) to be deposited along with the metabolite measurements. Processed data (measurements) maybe in the form of quantitated metabolite concentrations, MS peak height/area values, LC retention times, NMR binned areas, etc. Raw data in the form of MS and NMR binary files and associated parameter files may also be uploaded. We accept data from both targeted and untargeted studies The Metabolomics Workbench also provides a suite of tools for analysis and visualization of the data. Step-by-step instructions for the whole process are provided below.


Requirements for depositing data via the Metabolomics Workbench:

- 1. Register; check the box corresponding to "I wish to be authorized to upload data" '.
- E-mail us for authorization (help@metabolomicsworkbench.org).
 - We will contact you after we have reviewed your request for authorization to upload data (typically w/in 5 business days).
- 3. Log in.
- 4. The use of the common metabolite names in the RefMet database is strongly encouraged in order to be able to compare and contrast metabolite data across different experiments and studies. For your convenience an online tool is available to map your current metabolite identifications (where possible) to the corresponding RefMet names.
- 5. Use the 'New Data Upload' tab to (a) register your study, (b) submit metadata and processed data and (c) upload raw data/supplementary material. (Please read the step-by-step tutorial). Please indicate the date when the study may be made available to the public.
- E-mail us for additional assistance (help@metabolomicsworkbench.org), if needed.

Test upload data (Recommended for first time users)


New data upload: Register data

Reset

Submit

Uploading additional data files for already registered data

Upload additional file for already registered data with data track ID 1621

Please review the following information before you continue to upload data to remote directory 52/DataTrackID1621:

- The compressed (zip, 7z, gz) data file is selected and uploaded to the NMDR FTP server through a FTP client. A variety of free and commercial standalone file transfer clients exist to upload large data files directly to the FTP servers: FileZilla 盛,WinSCP 函,download managers 函,erusage of FileZilla is recommended for uploading data to the NMDR.
- · Use the following credentials to upload data to the NMDR:
 - Server Name: ftp://www.metabolomicsworkbench.org
 - o User Name: drccupload
 - o Password: #Vgy7ujmnbv\$
- After connecting to the NMDR FTP server, please change remote directory to 52/DataTrackID1621 before uploading the compressed (zip, 7z, g file.

Data upload tutorials

Upload and Manage Experimental Data and Metadata

Overview New Data Upload List Data Uploads Test Upload Tutorials

The following tutorials demonstrate how to use the templates available under Overview tab, required for submission of data sets to the National Metabolomics Data Repository (NMDR) via the Metabolomics Workbench.

Online Data Submission

- · Online data submission tutorial (PDF)
- · mwTab specification (PDF)

Overview

Metabolomics workbench

- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases

Protocols

Standards

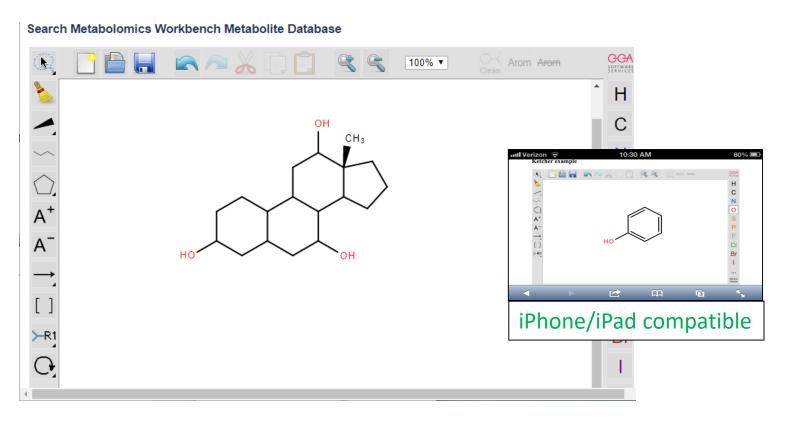
Databases

Metabolomics Workbench Metabolite Database

The Metabolomics Workbench Metabolite Database contains structures and annotations of biologically relevant metabolites. As of July 3rd, 2019, the databas contains over 65,000 entries, collected from public repositories such as LIPID MAPS & , ChEBI & , HMDB & , BMRB & , PubChem & , and KEGG & .

Human Metabolome Gene/Protein Database (MGP)

The Human Metabolome Gene/Protein Database (MGP) of metabolome-related genes and proteins contains data for over 7300 genes and over 15,500 proteins.


RefMet: A Reference list of Metabolite names

The main objective of RefMet is to provide a standardized reference nomenclature for both discrete metabolite structures and metabolite species identified by

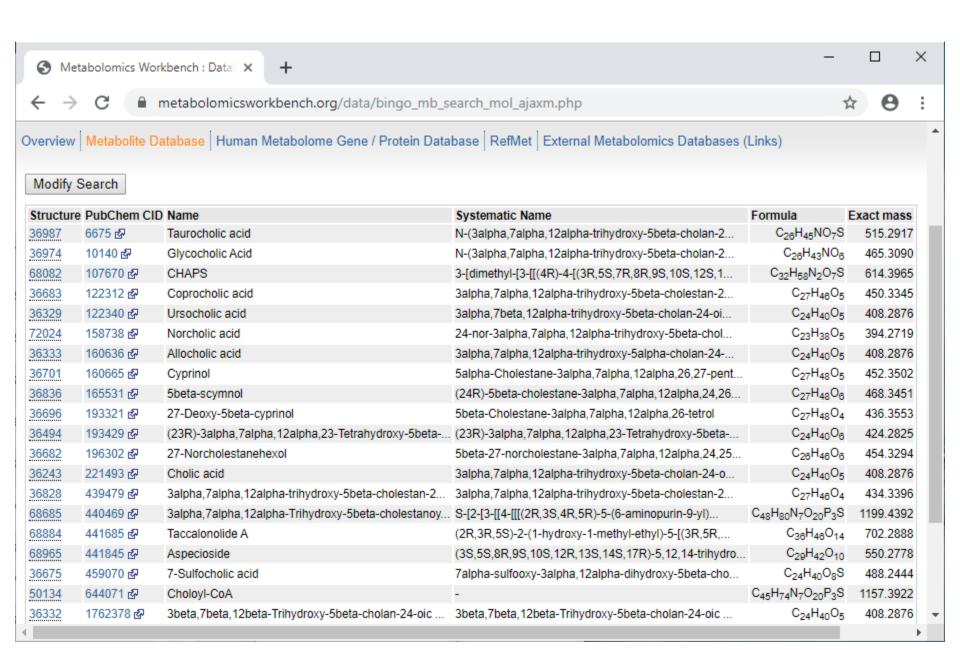
Search the metabolite database

Search the metabolite database of molecular structures

PUBCHEM_CID:		S
Name (Common, Systematic)		Lo Ta
Sort by	PUBCHEM_CID ▼	FI m
Records per page:	20 ▼	

Search type: Substructure ▼

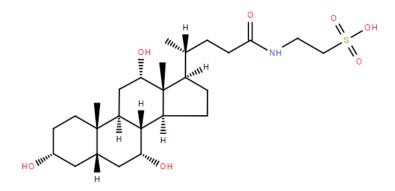
Lower limit for Tanimoto:


Flags for Exact match:

Substructure ▼

0.95 ▼

All(default)


Metabolite database: Substructure search results

Metabolite database: Detail view

Metabolomics Structure Database

MW REGNO:	36987
PubChem CID:	6675 &
Common Name:	Taurocholic acid &
Systematic Name:	$N\hbox{-}(3 alpha, 7 alpha, 12 alpha-trihy droxy-5 beta-cholan-24-oyl)-taurine$
Synonyms:	Taurocholic Acid [PubChem Synonyms &]
Exact Mass:	515.2917 (neutral) Calculate m/z: (Select m/z) ▼
Formula:	C ₂₈ H ₄₅ NO ₇ S
InChlKey:	WBWWGRHZICKQGZ-HZAMXZRMSA-N
LIPID MAPS Category:	Sterol Lipids
LIPID MAPS mainclass:	Steroid conjugates
LIPID MAPS subclass:	Taurine conjugates
MoNA MS spectra:	View spectra
Studies:	Available studies

Select appropriate tab below to view additional details:

All Database Links Calculated Properties Human Pathways

External database links:

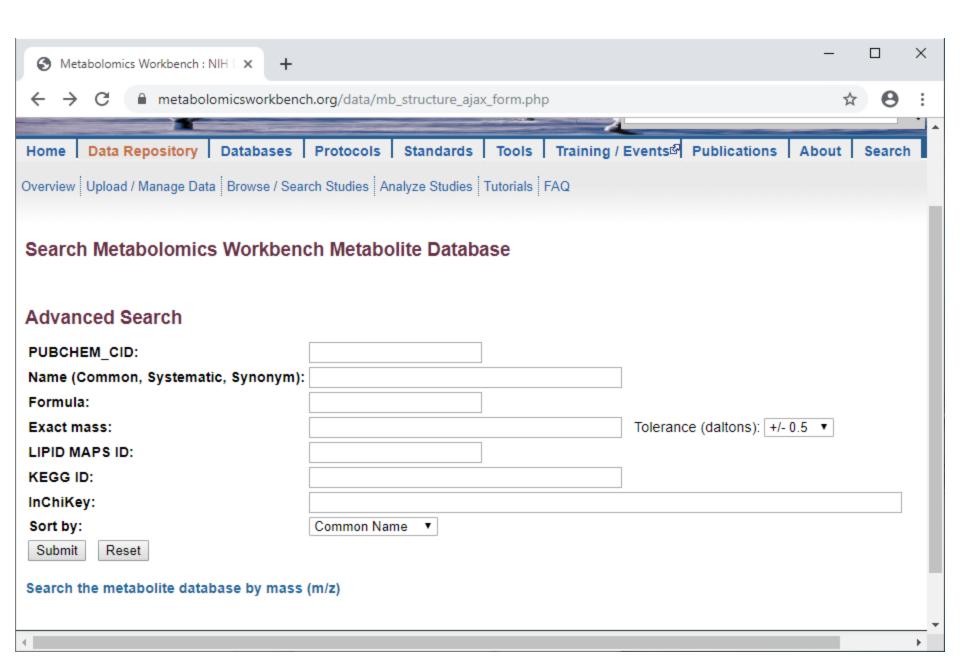
LIPID MAPS ID: LMST05040001 출 CHEBI ID: 28865 출 HMDB ID: HMDB0000036 출 KEGG ID: C05122 출 Chemspider ID: - Select appropriate tab below to view additional details:

Database Links **Calculated Properties Human Pathways** Calculated physicochemical properties (?): Heavy Atoms: 35 Rings: 4 Aromatic Rings: 0 Rotatable Bonds: van der Waals Molecular volume: 497.32 Å3 molecule-1 Toplogical Polar Sufrace Area: 144.16 Å² molecule⁻¹ Hydrogen Bond Donors: 5 Hydrogen Bond Acceptors: logP: 5.05 Molar Refractivity: 134.25 Fraction sp3 Carbons: 0.96

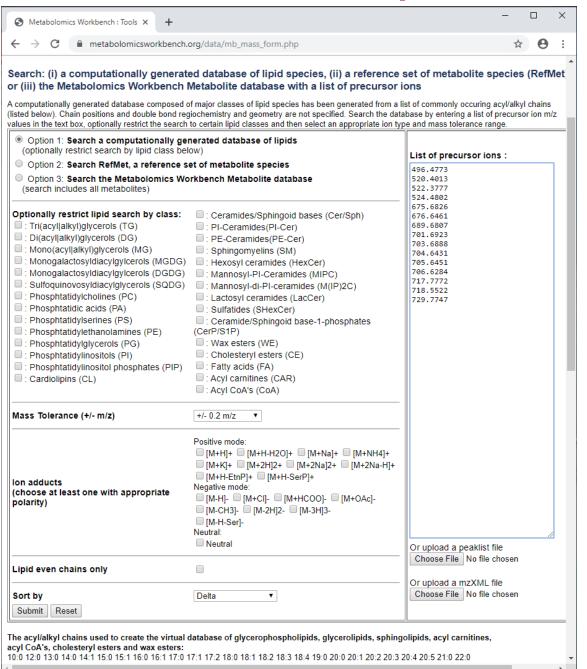
Select appropriate tab below to view additional details:

All Database Links Calculated Properties Human Pathways

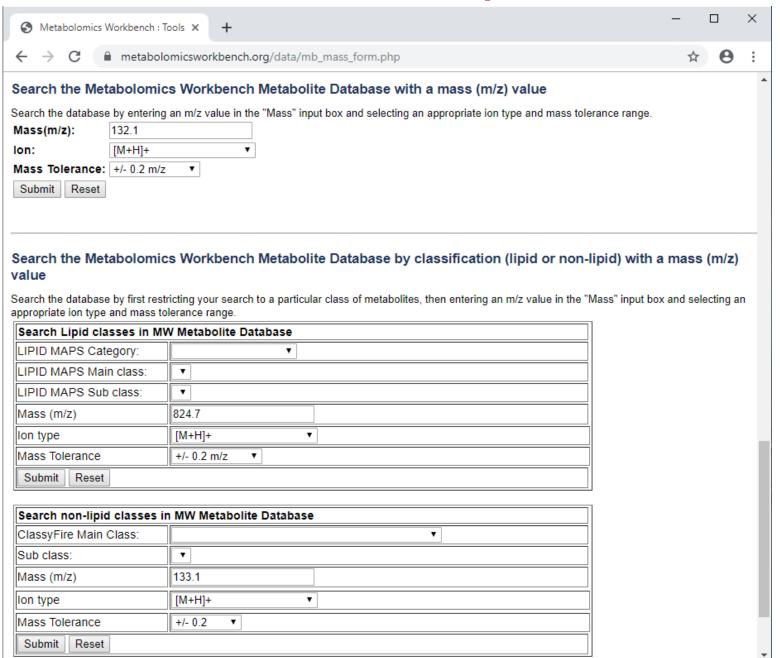
25

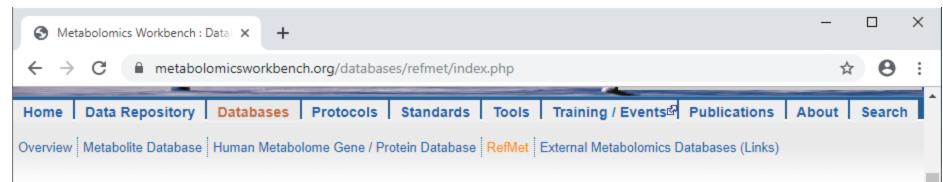

Human Pathway links:

sp3 Carbons:


HMDB and KEGG pathways containing this metabolite

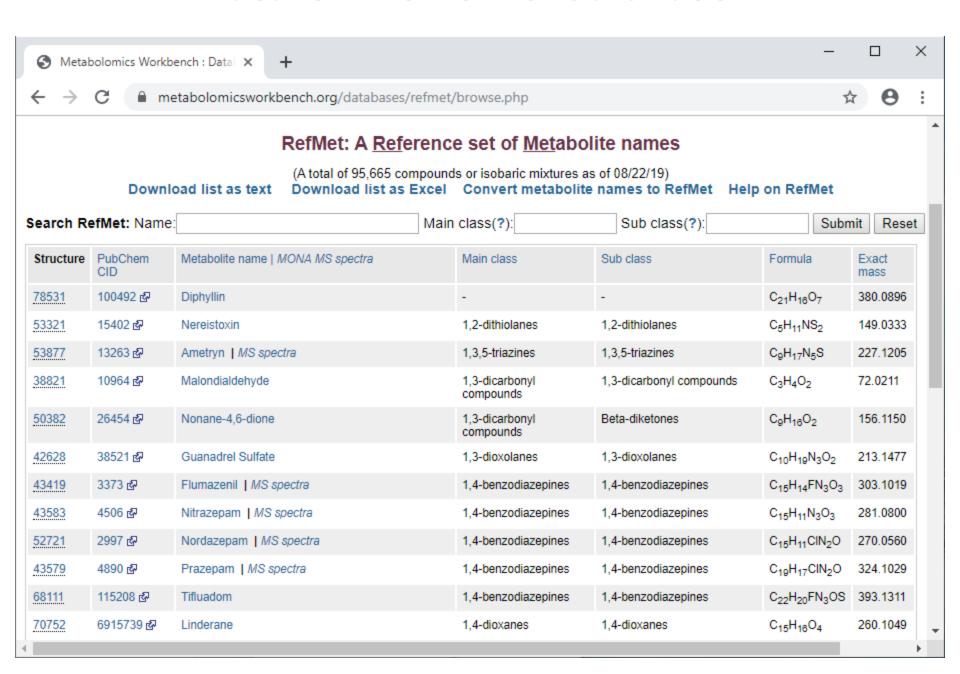
REACTOME pathways containing this metabolite


Search the metabolite database


Search databases by mass

Search databases by mass

RefMet database



RefMet: A Reference list of Metabolite names

The main objective of RefMet is to provide a standardized reference nomenclature for both discrete metabolite structures and metabolite species identified by spectroscopic techniques in metabolomics experiments. This is an essential prerequisite for the ability to compare and contrast metabolite data across different experiments and studies. The use of identifiers such as PubChem compound id's and InChiKeys offers only a partial solution because these identifiers will vary depending on parameters such as the salt form and degree of stereochemical detail. In addition, many metabolite species, especially lipids are not reported by MS methods as discrete structures but rather as isobaric mixtures (such as PC(34:1) and TG(54:2)). To this end, a list of over 200,000 names from a set of over 1,100 MS and NMR studies on the Metabolomics Workbench has been used as a starting point to generate a highly curated analytical chemistry-centric list of common names for metabolite structures and isobaric species. Additionally, the vast majority of these names have been linked to a metabolite classification system using a combination of LIPID MAPS & and ClassyFire & classification methods. A name-conversion user interface is provided where users can submit a list of metabolite names and map them to the corresponding Refmet names. This is a work-in-progress with the caveat that many metabolite names generated by metabolomics experiments will not currently map to RefMet identifiers. Nevertheless, RefMet has the ability to greatly increase the data-sharing potential of metabolomics experiments and facilitate "meta-analysis" and systems biology objectives for the majority commonly encountered metabolite species.

- Browse/Search/Download Refmet
- · Convert metabolite names to RefMet nomenclature
- Help on RefMet
- Run as Shiny app on local R installation: RefMet name search Shiny App
 RefMet MS search Shiny App

Search the RefMet database

Tutorials

Tutorials

Online Data Submission

· Online data submission tutorial (PDF)

mwTab File Usage

· mwTab file specification (PDF)

Data Browsing/Searching/Analysis

· Online browsing, search and analysis tools (PDF)

UCSD Metabolomics Workbench, a resource sponsored by the Common Fund of the National Institutes of Health

Terms of use | Site map | Contact | Personnel (Restricted access)

UC San Diego

4

Overview

Metabolomics workbench

- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases

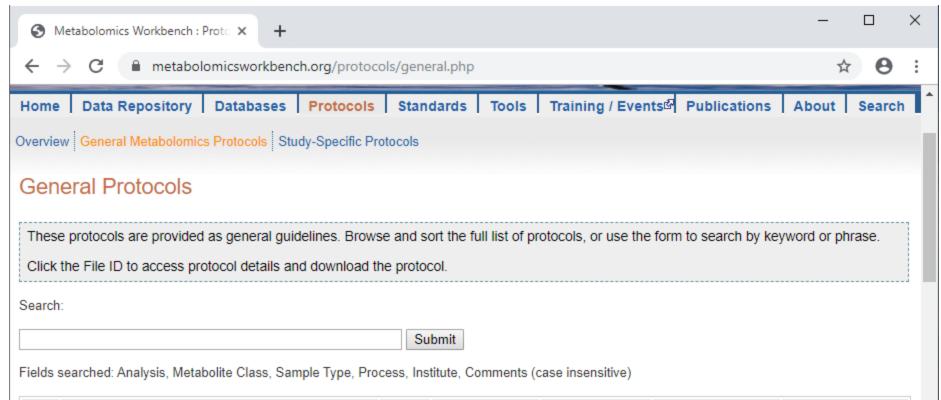
Protocols

Standards

Protocols

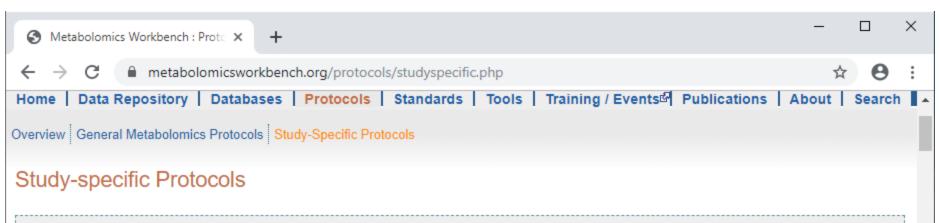
Protocols Overview

General Protocols


Our Regional Comprehensive Metabolomics Resource Cores (RCMRC)s and Metabolomics Technology Development Cores, in coordination with the NIH Metabolomics Protocol Exchange Working Group, have developed protocols intended as general guidelines for sample preparation and analysis.

Protocols are provided for a range of metabolite classes, sample types, and MS and NMR-based analysis processes. They are freely available for download.

Study-specific Protocols


Protocols used for specific experimental studies and projects are listed here and become available for download when the study data is released.

Protocols

File ID	File Name	Analysis	Metabolite Class	Sample Type	Process	Institute
349	SB_Acylcarnitine_Assay.pdf	MS	Acyl carnitines	Biological fluids/tissue	Sample prep	Sanford Burnham Medical Research Institute
74	Mouse_Liver-Acyl_Carnitine_Protocol.pdf	MS	Acyl carnitines	Mouse liver	Sample prep/LC-MS	Penn State
571	SB_AA_Assay_rev01.pdf	MS	Amino Acids	Amino Acids	Sample prep	Sanford Burnham Medical Research Institute
348	SB_AA_Assay.pdf	MS	Amino Acids	Biological fluids/tissue	Sample prep	Sanford Burnham Medical Research Institute
71	Bile_Acid_Extraction_Protocol.pdf	MS	Bile acids	Mouse liver	Sample prep/LC-MS	Penn State
561	hila acide protocol docy	MS	Rila aride	hland nlaema	Samnla nran/I C-MS	University of California

Protocols

These protocols have been submitted in association with **experimental studies and projects**. Browse and sort the full list of protocols, or use the form to search by keyword or phrase.

Click the File ID to access protocol details, including a list of studies that use that protocol and, for studies that have been released, an option to download the protocol.

Search:

Submit

Fields searched: Analysis, Metabolite Class, Sample Type, Process, Institute, Comments (case insensitive)

File ID	Analysis	Metabolite Class	Sample Type	Process	Institute
14	MS	Human metabolites	Human cells		University of Michigan
16	MS	Human metabolites	Human cells S		University of Michigan
17	MS	Human metabolites	Human cells A		University of Michigan
18	IVIS	Amino acids and other small molecules	Rat plasma		University of Michigan
19	MS	Amino acids and other small molecules	Rat plasma		University of Michigan
20	MS	Amino acids and other small molecules	Rat plasma	Analysis/LC-IVIS	University of Michigan
23	NMR	Human metabolites	Human urine S	Sample prep/NMR	RTI Internationa

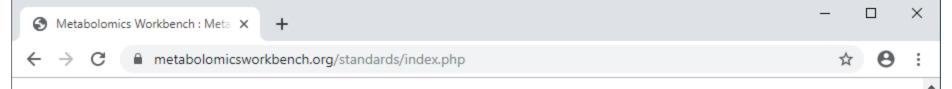
Protocol detail view

Overview

Metabolomics workbench

- Data Repository
 - Browse/Search Studies
 - Analyze Studies
 - Upload/Manage Studies
- Databases
- Protocols

Standards


Standards

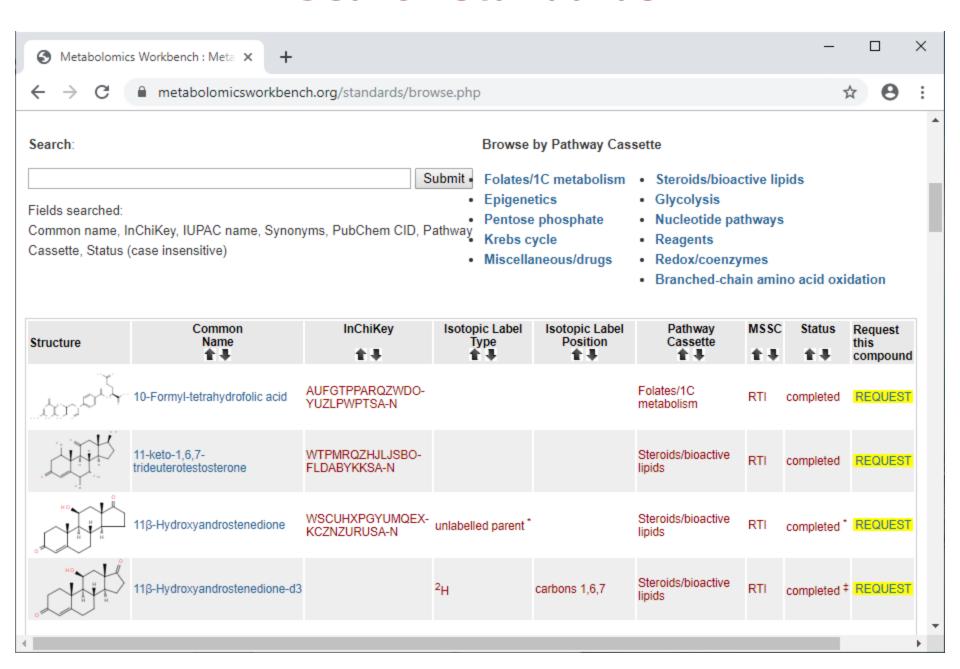
Please note that this program has ended. The Metabolite Standards Synthesis Cores (MSSCs) are shipping out the remaining inventory, but will not be making more. We are furthermore no longer accepting nominations for new syntheses.

You may request compounds via the links below, but note that some are no longer available.

Standards

Request Available Compounds

- Browse compounds that have been synthesized and are available for shipment.
- Search by Common name, InChiKey, IUPAC name, Synonyms, PubChem CID, and Status
- Download synthesis reports.
- Request aliquots of available compounds.


Browse / Search Compounds

- Browse all compounds approved for synthesis plus the complete list of compounds, including all nominations.
- Search by Common name, InChiKey, IUPAC name, Synonyms, PubChem CID, and Status
- · Link to compound structure and detailed annotations.

Metabolomics Workbench Standards Feedback

Search standards

