Metabolomics Workbench and the National Metabolomics Data Repository University of California San Diego and San Diego Supercomputer Center

NMDR analysis tools

NIH Common Fund's National Metabolomics Data Repository (supported by NIH grant, U2C-DK119886)

NMDR:Study-level analysis options

Study summary page

Summ	nary of all studies							
Click the Please re download	Study ID to access detailed study information ifer to our Data:FAQ and About:How to Cite led.	; download the mv pages for informa	vTab (metadata and process tion regarding how to cite th	sed data) e Metabo	text file; and lomics Worki	access bench a	the Statis	tics Toolbox for that study. Its that you have uploaded or
Showing pa	study Title	Showing results	Institute	Analysis	(*: Cont	ains unta Version	samples	a) Results per page: 50 V
\$T002058	Manual umor metabolomics	14 Mus musculus	▲ University of Colorado	∎. LC-MS	1	1	32	(* : Contains raw data) Uploaded data (267.1M)*
ST002059	4T1 and SkM cells	Homo sapiens	Anschutz Medical Campus University of Colorado	LC-MS	2022-02-14	1	12	(Data format:mzXML) Uploaded data (65.5M)*
ST002067	Time-Resolved Metabolomics of a Mouse Model of Ovarian High-Grade Serous Carcinoma (LC-MS)	Mus musculus	Georgia Institute of Technology	LC-MS*	2022-02-14	1	356	(Data format:m2XML) Uploaded data (143.9G)* (Data format:raw(Thermo))
ST002068	Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy	Mus musculus	Weill Cornell Medicine	LC-MS	2022-02-14	1	32	Uploaded data (609M)* (Data format:mzXML)
ST002070	Lipidomic Comparison of 2D and 3D Colon Cancer Cell Culture Models	Homo sapiens	The Ohio State University	LC-MS	2022-02-14	1	59	Uploaded data (17.1G)* (Data format:d)
ST002071	Metabolic profiling of mouse CD27+ and CD27- gammadelta T cells	Mus musculus	University of Louisville	LC-MS	2022-02-14	1	11	Uploaded data (1.2G)* (Data format:raw(Thermo))
ST002044	An observational study of cardiovascular patients in India	Homo sapiens	Translational Health Science And Technology Institute (THSTI)	LC-MS#	2022-02-08	1	286	Uploaded data (10.8G)* (Data format:mzML)
ST001950	Lipidome Alterations Following Mild Traumatic Brain Injury.	Rattus norvegicus	Georgia Institute of Technology	LC-MS	2022-02-07	1	114	Uploaded data (24.7G)* (Data format:mzML)
ST002060	Pollen metabolomics using Arabidopsis thaliana: Comparison of pollen at mature, hydration and germination stage	Arabidopsis thaliana	University of Illinois, Urbana-Champaign	LC-MS*	2022-02-07	1	72	Uploaded data (1.2G)* (Data format:mzML)
ST002061	Glutamine flux in macrophages treated with stable-isotope labeled analog 4 mM (U-13C5) glutamine	Mus musculus	Shanghai Jiao Tong University affiliated Renji Hospital	LC-MS	2022-02-07	1	16	Uploaded data (251.3M)* (Data format:mzXML)
ST001926	Modular evolution of the Drosophila metabolome	Drosophila melanogaster	University of Washington	LC-MS*	2022-02-02	1	261	Uploaded data (5.2G)* (Data format:mzXML)
ST002019	TIPs Metabolomics (blood)	Homo sapiens	Vanderbilt University Medical Center	MS	2022-02-02	1	70	Not available
ST002064	Metabolic impact of anticancer drugs Pd2Spermine and Cisplatin on the polar extracts of brain from healthy mice (part 1)	Mus musculus	University of Aveiro	NMR*	2022-02-02	1	44	Not available
ST002065	Metabolic impact of anticancer drugs Pd2Spermine and Cisplatin on the nonpolar extracts of brain from healthy mice (part 2)	Mus musculus	University of Aveiro	NMR*	2022-02-02	1	44	Not available
ST002056	Integrated Multilayer Omics Reveals the Genomic, Proteomic and Metabolic Influences of the Histidyl Dipeptides on Heart	Mus musculus	University of Louisville	GC-MS	2022-01-31	1	8	Not available
ST002062	Endophytic bacteria are key players in the modulation of the secondary metabolome of Lithospermum officinale L.	Lithospermum officinale	Aristotle University of Thessaloniki	LC-MS#	2022-01-31	1	45	Uploaded data (1.6G)* (Data format:raw(Thermo))
ST001680	Metabolome of NAFLD in high fat diet mouse model	Mus musculus	Weill Cornell Medicine	LC-MS	2022-01-27	1	96	Uploaded data (40.3G)* (Data format:d)
ST001713	Effects of different planting densities on the metabolism of Panax notoginseng	Panax notoginseng	Yunnan Agricultural University	GC-MS#	2022-01-25	1	20	Uploaded data (469.4M)* (Data format:d)
ST002057	Distinct Human Hepatocyte Lipidomics Profiles for Nonalcoholic Steatohepatitis and In Vitro- Induced Steatosis	Homo sapiens	Monash Institute of Pharmaceutical Sciences	LC-MS	2022-01-25	1	103	Uploaded data (18.5G)* (Data format:raw(Thermo))

Study detail page

Summary	of study ST001140
This data is ava https://www.me This work is su	ailable at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, etabolomicsworkbench.org, where it has been assigned Project ID PR000761. The data can be accessed directly via it's Project DOI: 10.21228/M89Q32 & pported by NIH grant, U2C- DK119886. See: https://www.metabolomicsworkbench.org/about/howtocite.php &
Perform stati	stical analysis Show all samples Show named metabolites Download named metabolite data
Study ID	ST001140
Study Title	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure
Study Summary	Glucocorticoids (GCs) are widely used in veterinary and human medicine. Chromic endogenous or iatrogenic GC overexposure impairs metabolic function and can esult in diverse side-effects, including Cushing's syndrome. This study examines the effects of experimentally induced short-term and long-term GC excess (hduced by prednisolone and tetracosactide, respectively) on the plasma lipidome of Beale dogs. Both, long- and short-term GC resulted in significant changes of the plasma lipidome.
Institute	National University of Singapore;University of Zurich
Department	Singapore Lipidomics Incubator (SLING);Vetsuisse Faculty, University of Zurich
Laboratory	Singapore upidomics Incubator (SLING), National University of Singapore

Map study metabolites to HMDB and KEGG pathways
 Map study metabolites to pathways with ratio/t-test data

Analysis tools applied to the data for the selected NMDR study A study may have more than one analysis (dataset)

Metabolite classification

Pie chart of metabolite super classes Pie chart of metabolite main classes Pie chart of metabolite sub classes

Normalization and averaging

Show Metabolite averages per experimental factor Perform normalization on data Create Relative log abundance plots

Univariate analysis

Perform multi-condition dot plot analysis Perform Volcano plot analysis Perform ANOVA analysis and class enrichment analysis MetENP analysis

Clustering and correlation

Perform hierarchical or heatmap cluster analysis Perform Clustered correlation analysis Perform Network analysis on correlated metabolites (mapped to classification) Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

Perform Principal component analysis Perform Linear discriminant analysis Perform Partial least-squares discriminant analysis (PLS-DA)

Classification and feature analysis

Perform OPLS-DA and VIP projection Random Forest and VIP projection

Mapping metabolites to human biochemical pathways Map study metabolites to HMDB and KEGG pathways Map study metabolites to pathways with ratio/t-test data

Statistics Toolbox for Study: ST001140

Title: Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure

Select a dataset:

Run analyses on data in Study ST001140 Dataset: Phospholipids, Chol. esters and Diacylglycerols

Metabolite classes (all analyses combined)

- Pie chart of metabolite super classes
 Pie chart of metabolite main classes
- Pie chart of metabolite sub classes

Normalization and averaging

Perform sample normalization / Show metabolite averages / Run cluster analysis
 Perform analyte scaling on data
 Create Relative log abundance plots

Univariate analysis

- Perform multi-condition dot plot analysis
- Perform Volcano plot analysis
- Perform ANOVA analysis

Clustering and correlation

- Perform hierarchial or heatmap cluster analysis
- Perform Clustered correlation analysis
- Perform Network analysis on correlated metabolites (mapped to classification)
- Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

- Perform Principal component analysis
- Perform Linear discriminant analysis
- Perform Partial least-squares discriminant analysis (PLS-DA)

Classification and feature analysis

```
• Perform OPLS-DA and VIP projection
```

Random Forest and VIP projection

MetaBatch Omic Browser (MD Anderson Cancer Center)

(Clustered Heat Maps, PCA+, UMAP, box plot, violin plot, and other visualizations)

• Load this study ₪ • Load this analysis (AN001870) ₪

MetENP: Metabolite enrichment and species-specific pathway annotation

MetENPWeb analysis
 MetENP R package

 MetENP tutorial

Mapping metabolites to human biochemical pathways

Map study metabolites to HMDB and KEGG pathways
Map study metabolites to pathways with ratio/t-test data

Study-specific analysis toolbox

Pie chart by Metabolite super class for all studies

Volcano Plot

log2 Fold Change

Study: ST000001 Analysis ID:AN000001 (GCMS positive ion mode)

Antipod Antipo

Data matrix

Fatb Induction Experiment (FatBIE)

P(10(38:4)

PI(34:1) PI(30:2)

PC(36.2)

PI(38:5)

pval -

P126-31

0+C+8H9414181723.0

OrCent18 122.01

GioCarlo . Cede(0.2/10.0) PE(34:1)

CE(24.4

LPC(20.5)

GioCer(d18:1/25:0)

B18418 Pase(40:0)

PE(38:0) CE(20.5) Glycerophospholipids(51301

Organic acids(33060)

Glycerolipids(26297) Fatty Acyts(20131) Sphingolipids(11482)

Nucleic acids(10812) Carbohydrates(7944) Organoheterocyclic

Sterol Lipids(7248) Benzenoids(4858)

Organic oxygen com Organic nitrogen compounds(19)

Polyketides(1830)

Prenol Lipids(1672) Unassigned(816) Other(979)

Class Enrichment by Kolmorogov-Smirnov test

(View P-value weighted Class Enrichment)

(View Unweighted Class Enrichment)

(View Class Enrichment by hypergeometric distribution)

10 12 14 16

5

10

8 P value(x-axis): Calculated by KS test and converted to -log10(P)

PLS-DA Score Plot (auto)

Component1(35.4%) Cumulative Proportion of Variance Explained = 47.7%

A 116151

A 115152 A 115472 A removal 11616605177 A 116167

A 196218 A 196218 196231

-5

-10

HexCe

Sphingoid base 1-P

LPC

O-PO

Statistics Toolbox for Study: ST001140

Title: Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure

Select a dataset: Phospholipids, Chol. esters and Diacylglycerols 🗸

Run analyses on data in Study ST001140 Dataset: Phospholipids, Chol. esters and Diacylglycerols

Metabolite classes (all analyses combined)

- · Pie chart of metabolite super classes
- · Pie chart of metabolite main classes
- Pie chart of metabolite sub classes

Normalization and averaging

- · Perform sample normalization / Show metabolite averages / Run cluster analysis
- Perform analyte scaling on data
- Create Relative log abundance plots

Univariate analysis

- · Perform multi-condition dot plot analysis
- Perform Volcano plot analysis
- Perform ANOVA analysis

Clustering and correlation

- Perform hierarchial or heatmap cluster analysis
- Perform Clustered correlation analysis
- Perform Network analysis on correlated metabolites (mapped to classification)
- Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

- Perform Principal component analysis
- Perform Linear discriminant analysis
- Perform Partial least-squares discriminant analysis (PLS-DA)

Classification and feature analysis

Perform OPLS-DA and VIP projection

Random Forest and VIP projection

MetaBatch Omic Browser (MD Anderson Cancer Center)

Mapping metabolites to human biochemical pathways Map study metabolites to HMDB and KEGG pathways

• Map study metabolites to pathways with ratio/t-test data

(Clustered Heat Maps, PCA+, UMAP, box plot, violin plot, and other visualizations)

• Load this study 🗗

• Load this analysis (AN001870) 🗗

MetENP: Metabolite enrichment and species-specific pathway annotation

MetENPWeb analysis

• MetENP R package 🖗

MetENP tutorial

Pie-chart of metabolite super classes detected in a study

Metabolite names are mapped to RefMet which is linked to a chemical classification system

Pie-chart of metabolite sub classes detected in a study

Pie-chart of metabolite sub classes detected in a study Restrict to a selected super class

Normalization and averaging: Sample normalization

Sample normalization

Normalization and averaging

- Perform sample normalization / Show metabolite averages / Run cluster analysis
- Perform analyte scaling on
- Create Relative log abundance pre-

Values have been normalized by dividing by the sample mean across all metabolites for each experimental condition

Run Hierarchial cluster analysis on this study | Run Heatmap cluster analysis on this study

Metabolite	F1	F2	F3	F4
Cer(d16:1/24:0)	0.0022	0.0022	0.0013	0.0014
Cer(d18:1/16:0)	0.0345	0.0541	0.0344	0.0421
Cer(d18:1/18:0)	0.0354	0.0588	0.0358	0.1090
Cer(d18:1/20:0)	0.0262	0.0248	0.0141	0.0333
Cer(d18:1/22:0)	0.1734	0.1488	0.0848	0.1310
Cer(d18:1/23:0)	0.1474	0.1571	0.0948	0.1476
Cer(d18:1/24:0)	0.1479	0.1616	0.0966	0.1649
Cer(d18:1/24:1)	0.0810	0.1207	0.1002	0.1511
Cer(d18:1/25:0)	0.0144	0.0118	0.0095	0.0130
Cer(d18:1/25:1)	0.0030	0.0039	0.0025	0.0044
Cer(d18:2/16:0)	0.0028	0.0036	0.0042	0.0028
Cer(d18:2/18:0)	0.0016	0.0047	NA	NA
Cer(d18:2/22:0)	0.0134	0.0123	0.0088	0.0083
Cer(d18:2/23:0)	0.0112	0.0174	0.0127	0.0114
Cer(d18:2/24:0)	<mark>0.0124</mark>	0.0189	0.0120	0.0160
Cer(d18:2/24:1)	0.0051	0.0107	0.0125	0.0091
GlcCer(d18:1/16:0)	0.0098	0.0220	0.0141	0.0175
GlcCer(d18:1/16:1)	0.0006	0.0012	0.0008	0.0012
GlcCer(d18:1/18:0)	0.0009	0.0023	0.0009	0.0028
01-0(440-4/20-0)	0.0005	0.0054	0.0000	0.0040

Normalization and averaging: Analyte scaling

Normalization and averaging

- Perform sample normalization / Show metabolite averages / Run cluster analysis
- Perform analyte scaling on data
- Create Relative log abundance plots

Analyte scaling: choose scaling method and analysis type

Scale	Method	Study ID	Study Title	MS Analysis Type
Run	Median 🗸	ST001140	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Phospholipids, Chol. esters and Diacylglycerols
Run	Median v	ST001140	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Sphingolipids
Run	Median v	ST001140	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Derivatized Spingosine-1-phosphates
Run	Median v	ST001140	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Triacylglycerols

View Original data View scaled data (Median method)

Scaled datafile (1st 5 columns and 10 rows only)

Samples	Class	CE.16.0.	CE.16.1.	CE.17.0.
Prednisolone-d0-P1	1	-0.0060	-3.5769	1.0000
Prednisolone-d0-P2	1	-10.3174	-13.8077	29.0000
Prednisolone-d0-P3	1	12.6527	10.9615	-41.0000
Prednisolone-d0-P4	1	1.1677	5.0385	15.0000
Prednisolone-d0-P5	1	0.8323	0.7308	1.0000
Prednisolone-d0-P6	1	3.2635	-3.5769	-13.0000
Prednisolone-d0-P7	1	6.0299	3.9615	-27.0000
Prednisolone-d0-P8	1	6.4491	4.5000	-27.0000
Prednisolone-d4-P1	2	10.0539	-4.1154	-41.0000
Prednisolone-d4-P2	2	-1.2635	-5.7308	15.0000

Normalization and averaging: Abundance plots

Normalization and averaging

- Perform sample normalization / Show metabolite averages / Run cluster analysis
- Perform analyte scaling on data
- Create Relative log abundance plots

MS Analysis Type Map Study ID Mode Study Title Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Phospholipids, Chol. esters and Run ST001140 Within groups V Diacylglycerols Exposure Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Run ST001140 Within groups ~ Sphingolipids Exposure Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Run ST001140 Within groups ~ Triacylglycerols Exposure

Relative log Abundance plots

Choose mode (within or across sample groups)

Volcano plot analysis tool

Most tools contain a form where the user selects appropriate experimental groups and analysis parameters prior to running the program

In this case, samples before and after Prednisolone treatment are compared. This study contains 4 analyses (different metabolite classes) and all data will be combined. A p-value cutoff of 0.5 and fold-change cutoff of 1.5 are selected for the volcano plot analysis step. Metabolites will be classified by sub class (as opposed to main class). No sample normalization will be performed prior to analysis.

Analyses for this study:

Triacylglycerols Sphingolipids Phospholipids, Cholesterol esters and Diacylglycerols Spingosine-1-phosphates

ANOVA analysis tool

Most tools contain a form where the user selects appropriate experimental groups and analysis parameters prior to running the program

Univariate analysis

- Perform multi-condition dot plot analysis
- Perform Volcano plot analysis

Perform ANOVA analysis

	ANOVA Setup				
Select Factor:	SamplingTimePoint V				
Analysis:	Phospholipids, Chol. esters and Diacylglycerols V				
P-value cutoff:	0.05				
Group by metabolite classification:	Sub class v				
Maximum # of (most significant) meta	bolites per class to use in group calculation: 5 🗸				
Run ANOVA					

Choose experimental factor to analyze by ANOVA (in this case it is before and after drug treatment), analysis group, p-value cutoff and classification group.

Analyses for this study: Triacylglycerols

Sphingolipids Phospholipids, Cholesterol esters and Diacylglycerols

Spingosine-1-phosphates

ANOVA analysis tool: Results

Most tools contain a form where the user selects appropriate experimental groups and analysis parameters prior to running the program

Volcano plot analysis results

Volcano plot analysis results (sorted by t-test p-value)

Metabolite sub classes (mean values)

Individual metabolites (sorted by p-value)

Table of results grouped by metabolite class (using most significant analytes per class)							
Metabolite class	log2 Fold Change	-log10(P-value)	FDR-adjusted P-value(BH)	# of metabolites per class			
LPC	-1.160	3.38	4.93e-3	-1(21)			
PC	-0.719	2.65	3.22e-2	-10(37)			
PI	-1.188	3.79	8.57e-3	-12(12)			
TAG	-1.414	1.69	8.92e-2	-2(25)			
Cer	1.157	2.92	1.75e-2	2(16)			
Chol. esters	1.493	2.60	7.67e-2	2(17)			
HexCer	0.961	3.90	6.47e-3	10(10)			
LPC	1.613	1.74	8.65e-2	2(21)			
O-PC	0.864	2.05	4.97e-2	1(26)			
O-PE	0.768	1.89	6.25e-2	1(10)			
PE	1.124	2.21	5.06e-2	4(12)			
Sphingoid base 1-P	0.812	2.22	3.83e-2	2(5)			

12 out of 12 PI's were significantly downregulated

4 out of 12 PE's were significantly upregulated

	List of significant metabolites (pvalue <=0.05 and fold-change >=1.5)							
Metabolite	log2 Fold Change	t-Test P-value	FDR-adjusted P-value(BH)	Main class	Sub class			
GlcCer(d18:1/23:0)	1.124	2.16e-6	3.09e-4	Glycosphingolipids	HexCer			
GlcCer(d18:1/16:0)	0.974	2.51e-6	3.09e-4	Glycosphingolipids	HexCer			
PI(36:4)	-1.374	6.28e-6	4.01e-4	Glycerophosphoinositols	PI			
PI(38:4)	-1.229	6.51e-6	4.01e-4	Glycerophosphoinositols	PI			
GlcCer(d18:1/22:0)	1.029	3.01e-5	1.29e-3	Glycosphingolipids	HexCer			
PI(38:5)	-1.481	3.15e-5	1.29e-3	Glycerophosphoinositols	PI			
PI(36:3)	-1.401	7.29e-5	2.33e-3	Glycerophosphoinositols	PI			
GlcCer(d18:1/24:1)	1.040	8.03e-5	2.33e-3	Glycosphingolipids	HexCer			
GlcCer(d18:1/24:0)	0.953	8.57e-5	2.33e-3	Glycosphingolipids	HexCer			
PI(36:2)	-0.912	9.46e-5	2.33e-3	Glycerophosphoinositols	PI			
PI(34:1)	-1.132	1.21e-4	2.71e-3	Glycerophosphoinositols	PI			
CE(24:4)	1.502	1.56e-4	3.03e-3	Sterol esters	Chol. esters			
PI(40:5)	-1.291	1.60e-4	3.03e-3	Glycerophosphoinositols	PI			
PC(36:3)	-0.651	1.80e-4	3.16e-3	Glycerophosphocholines	PC			
PC(35:2)	-0.755	2.54e-4	3.94e-3	Glycerophosphocholines	PC			
PI(34:2)	-0.986	2.56e-4	3.94e-3	Glycerophosphoinositols	PI			
PI(40:4)	-1.075	3.03e-4	4.22e-3	Glycerophosphoinositols	PI			
Cer(d18:2/18:0)	1.436	3.09e-4	4.22e-3	Ceramides	Cer			
GlcCer(d18:1/18:0)	1.147	3.31e-4	4.28e-3	Glycosphingolipids	HexCer			
LPC(19:0)	-1.160	4.16e-4	4.93e-3	Glycerophosphocholines	LPC			
GlcCer(d18:1/20:0)	0.916	4.21e-4	4.93e-3	Glycosphingolipids	HexCer			
PE(34:1)	1.523	6.91e-4	7.72e-3	Glycerophosphoethanolamines	PE			
PI(32:1)	-1.079	8.47e-4	8.71e-3	Glycerophosphoinositols	PI			
GlcCor(d18:1/25:0)	0.816	8 500-1	8 710-3	Glycosphingolinids	HeyCor			

Volcano plot analysis results (click on icons)

Volcano plot

Class enrichment plot

Bubble plot of -log10 p-value vs fraction directional change

Barplot of significantly altered metabolite classes

Multi-condition dot-plot analysis

Useful for plotting time-course data or comparing multiple experimental conditions to controls

Univariate analysis

- Perform multi-condition dot plot analysis
- Perform Volcano plot analysis
- Perform ANOVA analysis

Example: Metabolite changes associated with methionine stress sensitivity of human breast cancer cells. Use 100uM Methionine group as control and compare 370uM Homocysteine groups at various timepoints.

Control(s)	Experimental factor		Test(s)		
	Treatment:100uM Met Timepoint:0 hours (4)				
	Treatment:370uM Hcy Timepoint:2 hours (4)				
	Treatment:370uM Hcy Timepoint:4 hours (4)				
	Treatment:370uM Hcy Timepoint:8 hours (3)				
	Treatment:370uM Hcy Timepoint:12 hours (4)				
	Treatment:370uM Hcy Timepoint:24 hours (4)				
	Treatment:370uM Hcy Timepoint:48 hours (4)				
	Treatment:quality check Timepoint:quality check (3)				
x-axis labels: 2	r_4hr_8hr_12hr_24hr_48hr	Show a single class:			
P-value cutoff:	0.05 · Fold-change cutoff: 1.2 · Sample no	rmalization: Mean 🗸			
Group by meta	oolite classification: Sub class # of individual met	abolites to display: 30	×.		
Maximum # of (most significant) metabolites per class to use in grou	p calculation: $5 \times$			

Plots

Query builder GUI

Multi-condition dot-plot analysis results

All groups are being compared to the control group (100uM Methionine treatment)

Increasing time ->

Increasing time ->

Metabolite class Plot

Individual metabolite Plot

Multi-condition dot-plot analysis

Useful for plotting time-course data or comparing multiple experimental conditions to controls

	Dot Plot analysis for Study ST000077					
Select one or mor	e experimental factors for control and test groups. The members of each group should be I	DIFFERENT.				
Control(s)	Experimental factor	Test(s)				
	Treatment:100uM Met Timepoint:0 hours (4)					
	Treatment:370uM Hcy Timepoint:2 hours (4)					
	Treatment:370uM Hcy Timepoint:4 hours (4)					
Treatment:370uM Hcy Timepoint:8 hours (3)						
	Treatment:370uM Hcy Timepoint:12 hours (4)					
	Treatment:370uM Hcy Timepoint:24 hours (4)					
	Treatment:370uM Hcy Timepoint:48 hours (4)					
	Treatment:quality check Timepoint:quality check (3)					
x-axis labels ?: 2	hr_4hr_8hr_12hr_24hr_48hr Show a single class: TAG	~				
P-value cutoff: 0.	.05 V Fold-change cutoff: 1.5 V Sample formalization: None V					
Use: Submitted me	tabolite names V Maximum # of individual meta olites to display: 30 V					
Group by: Sub cla	ass 🗸 Maximum # of (most significant) meta polites per class to use in group calcula	ation: 5 🗸				
Analysis: ESI/QTO	F positive ion mode → Combine data for all plalyses?: ✓ Run Analysis					

Restrict to a single class (triacylglycerols)

No significant changes compared to control in the TAG class were observed at the 24hr timepoint, so that column is absent in the plot.

Cluster analysis tools

	'n					
Perform hierarchial or h	eatmap cluster analysi	s				
Borform Clustered corre	lation analysis					
Perform Clustered colu	auon analysis					
Perform Network analy	on correlated metab	olites (mapped	l to classificati	on)		
						
Perform Network analys	on correlated metable	blites (mapped	i to foid-chang	e)		
Jata for (Study ST001140) Analysis AN001871) /alues for each metabolite have been	scaled by dividing by the mean acre	oss all factors				
un Hierarchial cluster analysis on	this study Run Heatmap cluster	analysis on this stud	ly			
retabolite	F1 1 3232	F2 1 1491	0.5756	F4 0.7946		
Cer(d18:1/16:0)	0.9360	1 2680	0.6926	1.0354		
Cer(d18:1/18:0)	0.6867	0.9859	0.5171	1.9195		
Cer(d18:1/20:0)	1.1739	0.9578	0.4702	3542		
Cer(d18:1/22:0)	1.3841	1.0262	0.5037	0.949		
Der(d18:1/23:0)	1.1823	1.0882	0.5655	1.0739		
Cer(d18:1/24:0)	1.1411	1.0774	0.5541	1.1545		
Cer(d18:1/24:1)	0.8238	1.0613	0.7579	1.3952		
Cor(d18:1/25:0)	1.3044	0.9207	0.6363	1 0637		
561(010.1120.0)				1.0037		
Cer(d18:1/25:1)	0.9870	1.0916	0.5991	1.2960		
Cer(d18:1/25:1) Cer(d18:2/16:0)	0.9870 0.9557	1.0916	0.5991 1.0837	1.2960 0.8881		
Cer(d18:1/25:1) Cer(d18:2/16:0) Cer(d18:2/18:0) Cer(d18:2/18:0)	0.9870 0.9557 0.5583	1.0916 1.0655 1.4417	0.5991 1.0837 NA	1.2960 0.8881 NA		
Cer(18:125:1) Cer(18:125:1) Cer(18:2/16:0) Cer(18:2/18:0) Cer(18:2/22:0) Cer(18:2/22:0)	0.9870 0.9557 0.5583 1.3553 0.9520	1.0916 1.0655 1.4417 1.0771 1.2847	0.5991 1.0837 NA 0.6618 0.8033	1.2960 0.8881 NA 0.7618 0.8811		
Cer(d18: 1/25 1) Cer(d18: 2/16 0) Cer(d18: 2/18 0) Cer(d18: 2/22 0) Cer(d18: 2/23 0) Cer(d18: 2/23 0)	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327	0.5991 1.0837 NA 0.6618 0.8033 0.6736	1.2960 0.8881 NA 0.7618 0.8811 1.0994		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/20.0) Cer(d18.2/23.0) Cer(d18.2/24.0) Cer(d18.2/24.1)	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376 0.6456	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327 1.1770	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840	1.2560 0.8881 NA 0.7618 0.8811 1.0994 1.0526		
Par(d18:1/25:1) Par(d18:2/16:0) Par(d18:2/16:0) Par(d18:2/16:0) Par(d18:2/22:0) Par(d18:2/24:0) Par(d1	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376 0.9376 0.6456 0.7048	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327 1.1770 1.3701	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533	1.2960 0.8881 NA 0.7618 0.8811 1.0994 1.0526 1.1468		
Per(d18:1/25:1) Per(d18:2/16:0) Per(d18:2/16:0) Per(d18:2/16:0) Per(d18:2/22:0) Per(d18:2/22:0) Per(d18:2/24:0) Per(d18:2/24:0) Per(d18:2/24:1) SicCer(d18:1/16:0) SicCer(d18:1/16:1)	0.9870 0.9557 0.5583 1.3553 0.9520 0.9376 0.6456 0.7048 0.7320	1.0916 1.0655 1.4417 1.2847 1.2327 1.1770 1.3701 1.2868	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996	1.2860 0.8881 NA 0.7618 0.8811 1.0994 1.0526 1.1468 1.2754		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/20.0) Cer(d18.2/23.0) Cer(d18.2/24.0) Cer(d18.2/24.1) BicCer(d18.1/16.0) BicCer(d18.1/16.1) BicCer(d18.1/16.1)	0.9870 0.9557 0.5583 1.3553 0.9520 0.6456 0.7048 0.7320 0.6099	1.0916 1.0655 1.4417 1.0771 1.2847 1.2327 1.1770 1.3701 1.2868 1.3018	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996 0.4579	1,2560 0,881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599		
Cer(d18:1/25:1) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/22:0) Cer(d18:2/24:0) Cer(d18:2/24:0) SilcCer(d18:1/16:0) SilcCer(d18:1/16:0) SilcCer(d18:1/16:1) SilcCer(d18:1/16:0) SilcCer(d18:1/16:0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7 748 0 7 7320 0 6099 0 7235	1.0916 1.0655 1.4417 1.2771 1.2847 1.2327 1.1770 1.3701 1.2868 1.3018 1.3584	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996 0.4579 0.6325	1,2360 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/22.0) Cer(d18.2/24.0) Cer(d18.2/24.0) Cer(d18.1/16.0) SilcCer(d18.1/16.1) SilcCer(d18.1/16.1) SilcCer(d18.1/18.0) SilcCer(d18.1/22.0)	0.9870 0.9557 0.5583 0.9520 0.9376 0.6456 0.748 0.7320 0.6699 0.7235 0.7804	1.0916 1.0655 1.4417 1.2247 1.2327 1.1770 1.3701 1.2668 1.3018 1.3584 1.6101	0,5991 1,0837 NA 0,6618 0,8033 0,6736 1,1840 0,7533 0,6996 0,4579 0,6325 0,4553	1,2560 0,881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241		
Ser(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Cer(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) Ser(18.2) SicCer(18.1) Ser(18.2) SicCer(18.1) Ser(18.2) SicCer(18.1) Ser(2.0) SicCer(18.1) Ser(2.0) SicCer(18.1) Ser(2.0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7748 0 7320 0 6099 0 7235 0 7804 0 7706	1,0916 1,0655 1,4417 1,2847 1,2327 1,1770 1,3701 1,2668 1,3018 1,3568 1,3018 1,3564 1,6101 1,5278	0,5991 1,0837 NA 0,6618 0,8033 0,6736 0,6736 0,6736 0,6596 0,4579 0,6325 0,4553 0,5807	1,2660 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6559 1,2584 1,0241 1,0241 1,067		
Cer(d18:1/25:1) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/16:0) Cer(d18:2/22:0) Cer(d18:2/24:0) Cer(d18:2/24:0) SiGCer(d18:1/16:0) SiGCer(d18:1/16:0) SiGCer(d18:1/16:1) SiGCer(d18:1/18:0) SiGCer(d18:1/12:0) SiGCer(d18:1/22:0) SiGCer(d18:1/23:0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7048 0 7235 0 6099 0 7235 0 7804 0 7066 0 7081	1 0916 1 0655 1 4417 1 2947 1 2327 1 3701 1 2668 1 3018 1 3584 1 6101 1 5278 1 5167	0.5991 1.0837 NA 0.6618 0.8033 0.6736 1.1840 0.7533 0.6996 0.4579 0.6325 0.4553 0.4553 0.5807 0.5867	1,2360 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241 1,0267 1,0069		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/22.0) Cer(d18.2/23.0) Cer(d18.2/24.1) SicCer(d18.1/16.0) SicCer(d18.1/16.1) OBicCer(d18.1/16.1) OBicCer(d18.1/16.1) OBicCer(d18.1/22.0) SicCer(d18.1/22.0) SicCer(d18.1/22.0) SicCer(d18.1/22.0) SicCer(d18.1/24.1)	0 9870 0 9557 0 5583 1 3553 0 9520 0 8456 0 7048 0 7048 0 720 0 720 0 720 0 720 0 7804 0 7784 0 7784 0 7784 0 7784 0 7784	1.0916 1.0655 1.4417 1.2477 1.2327 1.1770 1.2701 1.2868 1.3018 1.3018 1.3018 1.3584 1.6101 1.5278 1.5167 1.4048	0.5991 1.0337 NA 0.6518 0.8033 0.6736 0.6736 0.4579 0.4553 0.4553 0.4553 0.5867 0.5867 0.7622	1 2360 0 8881 NA 0 7618 0 8811 1 0994 1 0526 1 2754 1 6599 1 2584 1 0241 1 1067 1 1067 1 1069 1 1354		
Ser(418.1/25.1) Cer(418.2/16.0) Cer(418.2/16.0) Cer(418.2/16.0) Cer(418.2/22.0) Cer(418.2/23.0) Cer(418.2/24.1) SileCer(418.1/16.0) SileCer(418.1/16.0) SileCer(418.1/16.0) SileCer(418.1/16.0) SileCer(418.1/10.0) SileCer(418.1/12.0) SileCer(418.1/12.0) SileCer(418.1/24.0) SileCer(418.1/24.0) SileCer(418.1/24.0) SileCer(418.1/25.0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 8376 0 6456 0 7048 0 7320 0 6099 0 7235 0 7804 0 7066 0 7881 0 6721 0 8215	1 0916 1 0655 1 4417 1 2847 1 2327 1 1770 1 3701 1 368 1 3018 1 3018 1 3584 1 6101 1 5278 1 5167 1 4046 1 4817	0.5991 1.0837 NA 0.6518 0.8033 0.6736 1.1840 0.7533 0.6396 0.4579 0.6325 0.4553 0.5807 0.5807 0.5807 0.5807 0.5807 0.5807	1,2660 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,2554 1,2554 1,0241 1,0241 1,0254 1,02555 1,02555 1,02555 1,02555 1,025555 1,0255555 1,02		
Ser(418.1/25.1) Ser(418.2/16.0) Ser(418.2/16.0) Ser(418.2/16.0) Ser(418.2/22.0) Ser(418.2/24.0) Ser(418.2/24.1) SiGCer(418.1/16.0) SiGCer(418.1/16.0) SiGCer(418.1/16.1) SiGCer(418.1/16.0) SiGCer(418.1/16.0) SiGCer(418.1/12.0) SiGCer(418.1/23.0) SiGCer(418.1/24.0)	0 9870 0 9557 0 5583 1 3553 0 9552 0 9376 0 7326 0 748 0 7320 0 6099 0 7325 0 7804 0 7735 0 7804 0 7781 0 6721 0 6721 0 6721 0 0 6721 0 0 8215 0 7.297	1 0916 1 0655 1 4417 1 2947 1 2327 1 1770 1 3701 1 2668 1 3018 1 3564 1 6101 1 55278 1 5167 1 4048 1 4917 1 2703	0,5991 1,0837 NA 0,6618 0,8033 0,6736 1,1840 0,7533 0,6996 0,4579 0,6325 0,4553 0,4553 0,5807 0,5867 0,7622 0,6211 NA	1,2360 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,0559 1,2584 1,0241 1,0274 1,0059 1,1354 0,0747 NA		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/23.0) Cer(d18.2/23.0) Cer(d18.2/24.1) SicCer(d18.1/16.0) SicCer(d18.1/16.0) SicCer(d18.1/16.1) OBIC-Cer(d18.1/16.1) SicCer(d18.1/20.0) SicCer(d18.1/22.0) SicCer(d18.1/22.0) SicCer(d18.1/24.0) SicCer(d18.1/24.1) SicCer(d18.1/24.0) SicCer(d18.1/24.0) SicCer(d18.1/24.0) SicCer(d18.1/24.0) SicCer(d18.1/24.0)	0 9870 0 9557 0 5583 1 3553 0 9520 0 6456 0 7048 0 7048 0 7048 0 720 0 6099 0 7235 0 7804 0 7784 0 7786 0 7784 0 7786 0 7781 0 6721 0 6272 0 7297 NA	1 0916 1 0655 1 4417 1 2847 1 2327 1 1770 1 3701 1 2868 1 3018 1 3018 1 3018 1 3526 1 5167 1 4048 1 4817 1 4048 1 4817 1 2703 NA	0,5991 1,0837 NA 0,6618 0,8033 0,6736 0,6736 0,4579 0,6325 0,4553 0,4553 0,4553 0,5807 0,5867 0,7622 0,6211 NA NA	1 2360 0 883 NA 0 7618 0 8811 1 0994 1 0526 1 1468 1 2754 1 6599 1 2584 1 0241 1 1067 1 10069 1 1354 0 9747 NA 1 4856		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/23.0) Cer(d18.2/24.1) GlcCer(d18.1/16.0) GlcCer(d18.1/16.0) GlcCer(d18.1/16.0) GlcCer(d18.1/16.0) GlcCer(d18.1/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(d18.2/20.0) GlcCer(0 9870 0 9557 0 5583 1 3553 0 9520 0 9376 0 6456 0 7048 0 7320 0 6099 0 7235 0 7804 0 7066 0 7881 0 6721 0 8215 0 7297 NA	1 0916 1 0655 1 .4417 1 .2847 1 .2327 1 .1770 1 .3701 1 .2668 1 .3018 1 .3584 1 .6101 1 .5278 1 .5167 1 .4048 1 .40	0,5991 1,0837 NA 0,6618 0,8033 0,6736 1,1840 0,7533 0,6786 0,4579 0,6325 0,4553 0,5807 0,5807 0,5807 0,5807 0,5807 0,5807 0,5807 0,5514 NA 0,5114 1,0343	1,2660 0,8881 NA 0,7618 0,8811 1,0994 1,0526 1,1468 1,2754 1,6599 1,2584 1,0241 1,0241 1,0241 1,0241 1,0241 1,0254 0,9747 NA 1,4856 0,08651 0,08651 0,08651		
Cer(d18.1/25.1) Cer(d18.2/16.0) Cer(d18.2/16.0) Cer(d18.2/23.0) Cer(d18.2/23.0) Cer(d18.2/24.1) GlcCer(d18.1/16.0) GlcCer(d18.1/16.0) GlcCer(d18.1/16.1) GlcCer(d18.1/16.0) GlcCer(d18.1/23.0) GlcCer(d18.1/23.0) GlcCer(d18.1/23.0) GlcCer(d18.1/24.0) GlcCer(d18.1/24.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/25.0) GlcCer(d18.1/26.0) GlcC	0 9870 0 9557 0 5583 1 3553 0 9520 0 6456 0 7048 0 7048 0 7320 0 8699 0 7235 0 7804 0 7881 0 6721 0 6821 0 6721 0 6825 0 7297 NA 1 1701 1 3228	1 0916 1 0655 1 4417 1 2847 1 2847 1 2827 1 1770 1 2868 1 3018 1 3018 1 3084 1 6101 1 5276 1 5167 1 4048 1 4047 1 4047 1 4048 1 4047 1 2703 NA 0 9053 0 8800 0 9053 0 8800 0 8800 0 9053 0 8800 0 8800 0 8800 0 8800 0 8800 0 8800 0 8800 0 9053 0 9055 0	0.5991 1.0837 NA 0.6518 0.6033 0.6736 1.1840 0.7533 0.6996 0.4579 0.6325 0.4553 0.4553 0.5867 0.7622 0.6221 NA 0.5144 1.0343 1.1933 0.6990	1,2360 0,883 NA 0,7618 0,881 1,0994 1,0526 1,1468 1,2754 1,0526 1,2554 1,0241 1,067 1,0069 1,1354 0,09747 NA 1,4856 0,8651 0,53820 0,5382000000000000000000000000000000000		

Clustering data with hclust algorithm for (Study ST001140) (Analysis AN001871)

Metabolite	Structure	F1	F2	F3	F4
GlcCer(d18:2/24:0)	ME272158	NA	NA	0.51	1.49
LacCer(d18:2/24:1)	ME272168	NA	NA	1.13	0.87
GM3(d18:1/24:0)	ME272142	NA	NA	1.02	0.98
LacCer(d18:1/23:0)	ME272163	NA	NA	0.94	1.06
GM3(d18:2/20:0)	ME272146	1.10	0.90	NA	NA
LacCer(d18:2/22:0)	ME272167	1.19	0.81	NA	NA
Cer(d18:2/18:0)	ME272134	0.56	1.44	NA	NA
GlcCer(d18:2/16:0)	ME272157	0.73	1.27	NA	NA
GM3(d18:1/18:0)	ME272140	1.32	0.88	1.19	0.54
GM3(d18:2/18:0)	ME272145	1.29	0.80	1.48	0.39
Cer(d18:2/24:1)	ME272138	0.65	1.18	1.18	1.05
GM3(d18:2/24:1)	ME272147	0.82	0.93	1.55	0.79
GM3(d18:2/16:0)	ME272144	0.95	0.75	1.34	1.05
SM(42:3)	ME272185	0.92	0.87	1.35	0.94
.acCer(d18:2/16:0)	ME272166	0.73	0.89	0.97	1.54
Cer(d18:1/24:1)	ME272130	0.82	1.06	0.76	1.40
SM(36:1)	ME272174	0.95	0.91	0.66	1.53
Cer(d18:1/18:0)	ME272125	0.69	0.99	0.52	1.92
GlcCer(d18:1/18:0)	ME272150	0.61	1.30	0.46	1.66
GlcCer(d18:1/16:0)	ME272148	0.70	1.37	0.75	1.15
SlcCer(d18:1/24:1)	ME272155	0.67	1.40	0.76	1.14
SIcCer(d18:1/16:1)	ME272149	0.73	1.29	0.70	1.28
GlcCer(d18:1/20:0)	ME272151	0.72	1.36	0.63	1.26
GlcCer(d18:1/22:0)	ME272152	0.78	1.61	0.46	1.02
GlcCer(d18:1/23:0)	ME272153	0.71	1.53	0.58	1.11
GlcCer(d18:1/24:0)	ME272154	0.79	1.52	0.59	1.01
BlcCer(d18:1/25:0)	ME272156	0.82	1.48	0.62	0.97
SM(32:2)	ME272170	1.16	0.80	1.27	0.79
GM3(d18:1/16:0)	ME272139	1.17	0.91	1.03	0.87
SM(32:1)	ME272169	1.17	0.90	1.05	0.85
GM3(d18:1/24:1)	ME272143	1.09	1.01	1.15	0.72

Hierarchial Cluster analysis

Heatmap Cluster analysis

Cluster analysis tools

Clustered correlation analysis

Data matrix

Cer.d' 3M3.d' Cer.d' 31230 36.38.1230 31250 31250 31.220 36.42.1 36.42.1 36.43.1 36.43.1

Cer.d

d18.1 d18.1 d18.1 d18.1 d18.1 d18.1 d18.1 d18.1 s18.2 s18.2 s18.2

Network analysis tools (mapped to classification) Pearson correlation or Debiased Sparse Partial Correlation (DSPC)

Select groups, correlation method, correlation value cutoff, DSPC p-value cutoff and sample normalization options

Hover over edge to display correlation coefficient

 \odot

Network analysis tools (mapped to fold-change)

Select groups to compare by fold-change, correlation method, correlation value cutoff, DSPC p-value cutoff and sample normalization options

Zoom in to see metabolite labels

Multivariate analysis tools (LDA example)

Multivariate analysis tools (PLS-DA example)

Multivariate analysis

- Perform Principal component analysis
- Perform Linear discriminant analysis
- Perform Partial least-squares discriminant analysis (PLS-DA)

Choose an analysis group

Parti	Partial least squares Discriminant analysis on MS studies										
This analysis uses the "muma" 🖗 package of the R statistics environment (Reference 🖗)											
Click on links below to perform analysis.											
PLSDA	Study ID	Scaling		Study Title	MS Analysis Type						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Phospholipids, Chol. esters and Diacylglycerols						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Sphingolipids						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Derivatized Spingosine-1-phosphates						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Triacylglycerols						

Scores plot

Multivariate analysis tools (PLS-DA example)

Multivariate analysis

- Perform Principal component analysis
- Perform Linear discriminant analysis
- Perform Partial least-squares discriminant analysis (PLS-DA)

Choose an analysis group

Parti	Partial least squares Discriminant analysis on MS studies										
This analysis uses the "muma" 🖗 package of the R statistics environment (Reference 🖗)											
Click on links below to perform analysis.											
PLSDA	Study ID	Scaling		Study Title	MS Analysis Type						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Phospholipids, Chol. esters and Diacylglycerols						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Sphingolipids						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Derivatized Spingosine-1-phosphates						
Run	ST001140	Auto	~	Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure	Triacylglycerols						

Classification and feature analysis tools (OPLS-DA example)

Scores plot

Classification and feature analysis tools (Random Forest example)

Classification and feature analysis

- Perform OPLS-DA and VIP projection
- Random Forest and VIP projection

Choose experimental conditions for the 2 groups being compared

		Random Forest analysis for Study ST001140		
		(Analysis AN001870)		
Sele	ct one or	more experimental factors for Groups 1 and 2. The members of each group should be	DIFFER	ENT.
	Group1	Experimental factor	Group2	
		TreatmentGroup:Prednisolone TreatmentDuration:0d SamplingTimePoint:before		
		TreatmentGroup:Prednisolone TreatmentDuration:4d SamplingTimePoint:after		
		TreatmentGroup:Tetracosactide TreatmentDuration:00w SamplingTimePoint:before		
		TreatmentGroup:Tetracosactide TreatmentDuration:25w SamplingTimePoint:after		
		Submit Query		

VIP plot

Mapping metabolites to human biochemical pathways

	_						
Mapping metabolites to human biochemical pathways					Pathwa	ay mapping for Study ST001140	
Map study metabolites to HMDB and KEGG pathways	Choose experimental		Select o	one or more exp	perimental factors fo	(Analysis All analyses used) or Groups 1 and 2. The members of each group should	be DIFFERENT.
 Map study metabolites to pathways with ratio/t-test data 	conditions for the 2		Group1			Experimental factor	Group2
	groups being			TreatmentGro	up:Prednisolone T	reatmentDuration:0d SamplingTimePoint:before (8)	
	compared			TreatmentGro	up:Prednisolone T	reatmentDuration:4d SamplingTimePoint:after (8)	
compared				TreatmentGro	up:Tetracosactide	TreatmentDuration:00w SamplingTimePoint:before (5)
				TreatmentGro	up:Tetracosactide	TreatmentDuration:25w SamplingTimePoint:after (6)	
			Limit by p	oathway class:	Metabolic 🗸		
	Limit by pathway class		Analysis	Phospholipids	Metabolic	ylglycerols V Combine data for all analyses?: 🗹	Map to pathways
					Disease		
					Drug Action		
		s Wor	kbench		Drug Metabolism		Terms of use Site m
		200			Physiological		
Results table contains ratios and t-test p-values for e	ach	-60			Signaling		
metabolite which is associated with a biochemical pa	athway				All		

Numerator:	TreatmentGroup:Prednisolone	Treatm	entDuration:4d	SamplingTimePoint:after					
Denominator	TreatmentGroup:Prednisolone	Treatm	entDuration:0d	SamplingTimePoint:before					
T-test:If p-value <0.05 metabolites are highlighted* Red: ratio >1 Green: ratio <1 Gray: insufficient data									
Bile Acid Biosynthesis & Ratio T-test p-value* FDR-corrected p-value(BH									
CE(18:0)		1.26	3.413E-1	6.066E-1					
Glyce	rolipid Metabolism 🖉 📃 🔪	Ratio	T-test p-value*	FDR-corrected p-value(BH					
DG(16:0_20:4)		9.91	8.607E-1	9.750E-1					
DG(18:0_18:2)		1.31	5.608E-1	7.872E-1					
DG(18:0_20:4)		1.04	9.192E-1	1.000E+0					
DG(18:1_18:2)		1.04	0.000E+0	0.000E+0					
DG(18:1_20:4)		0.54	2.451E-1	5.017E-1					
DG(18:2_18:2)		1.27	5.280E-1	7.643E-1					
DG(18:2_20:4)		0.74	5.222E-1	7.601E-1					
TG(46:1)		0.57	1.312E-1	3.511E-1					
TG(46:2)		0.55	7.056E-2	2.340E-1					
TG(48:0)		1.11	8.423E-1	9.679E-1					
TG(48:1)		1.06	8.760E-1	9.767E-1					
TG(48:2)		0.72	2.890E-1	5.487E-1					
TG(48:3)		0.49	4.253E-2	1.592E-1					
TG(50:0)		1.41	5.078E-1	7.484E-1					
TG(50:1)		0.88	8.001E-1	9.443E-1					
TG(50:2)		0.88	0.000E+0	0.000E+0					
TG(50:3)		0.88	0.000E+0	0.000E+0					
TC(50.4)		0 42	7 4915 2	2 4505 1					

Links to human SMPDB pathway

A pathway enrichment score table is also generated

Pathway Enrichment (Kolmogorov-Smirnov test)						
Pathway (with score >3)	Enrichment score (-log10(FDR-corrected p-value))					
Sphingolipid Metabolism	18.000					
Phosphatidylinositol Phosphate Metabolism	15.654					
Phospholipid Biosynthesis	15.051					
Glycerolipid Metabolism	13.416					
Steroid Biosynthesis	3.895					

Meta-analysis tools (across different studies)

Metabolomics Tools:→Load and analyze your own dataset

Modular, portable suite of statistical tools for metabolomics analysis

- R statistics-based approach
 - Normalization and scaling
 - Bar graphs and Boxplots
 - Univariate Analysis
 - Multivariate Analysis
 - Clustering and Correlation
 - Feature Analysis
- > Ability to select and combine groups of experimental conditions (factors)
- Applicable to targeted and untargeted datasets
- Workflow enables classification of metabolite names via RefMet
- > Classified datasets are then amenable to class-specific and pathway-specific analysis

Perform data analysis on user-uploaded	data		
STEP 1: Load your data file (tab-delimited text)	Load example file	View example file	Classify metabolite names via RefMet
File format required: Column 1: sample names Column 2: group identifier (letters, numbers Columns 3 to n: Variables Data matrix (input file)	or text)		

Metabolomics Tools:→Load and analyze your own dataset

https://www.metabolomicsworkbench.org/data/analyze.php

Samples	Group CAR (16:	0)	CAR (18:	0)	CAR (18:	1)	CAR (18:	2)	CE(18:1))
S001_2	Affected/Male	32592	7400	25164	16371	39797	461580	342255	241473	26379
S002_27	Affected/Male	37821	13552	40988	26845	51799	526923	409751	250720	41055
S007_51	Affected/Male	9201	6037	6219	10361	18848	461700	168391	125282	3802
S008 59	Affected/Male	132519	15845	245076	159627	24173	437630	326360	358552	21342
S009_39	Affected/Male	24407	9146	51668	32965	42774	337701	362332	204264	13970
S013_29	Affected/Male	30813	7299	35485	25603	58491	386359	385114	286028	30002
S014_22	Affected/Male	33082	8830	36894	21874	49050	542047	420069	256991	36641
S015_5	Affected/Male	29115	7472	38326	23507	35022	230142	298691	174860	9054
S016_31	Affected/Male	34081	7571	57646	48296	50157	498962	426752	266928	36812
S018_50	Affected/Male	58917	11048	101684	70157	45607	463558	429808	284710	18142
S021_21	Affected/Male	22655	6631	28896	22833	60510	567791	461084	409043	40955
S022_14	Affected/Male	23852	7132	33083	20959	56129	465535	475318	425279	17626
S023_41	Affected/Male	26156	6751	44201	26734	57518	482054	447923	338220	46731
S024_43	Affected/Male	24502	7108	36540	25172	37975	488013	379549	371133	21571
S025_33	Affected/Male	10231	5945	9475	14291	22012	391757	281674	189573	2667
S026_23	Affected/Male	31683	9410	39957	30026	40384	477841	385080	341657	19780
S027_18	Affected/Male	24153	5860	36417	28030	41637	476109	382987	348275	20344
S028_35	Affected/Male	32603	6541	64274	44075	62381	480321	527889	425970	32329
S029_34	Affected/Male	29696	7858	39767	36869	51518	483914	494792	379614	31195
S031_9	Affected/Male	30138	6312	26999	22104	40489	476062	401627	325777	30745
S032_64	Affected/Female	32551	9934	45279	30568	50255	329084	417248	412746	12094
S034_66	Affected/Female	40129	7901	54879	52292	51006	515113	355455	367787	28220
S037_46	Affected/Female	55349	7426	103693	35440	22463	173160	191218	172002	6157
S038_8	Affected/Female	16663	9111	9982	11166	49852	365320	332450	208024	3605
S040_26	Affected/Female	30737	11822	30133	19357	28450	464703	349594	352426	25960
S041_69	Affected/Female	20351	9616	33138	15191	60271	308696	365188	384615	18781
S042_61	Affected/Female	44531	10508	87680	70868	34093	507718	452632	536826	22587
S044_3	Affected/Female	26159	7195	34041	31696	33092	482180	363697	362897	29765
S045_58	Affected/Female	53023	9926	96073	71568	34687	403564	295048	467228	32331
S046 24	Affected/Female	21720	5712	23667	10882	41203	279409	267775	243040	17383
S047 16	Affected/Female	17094	5225	24567	17196	42917	349825	298969	278524	36062
S049 48	Affected/Female	55655	10899	63535	62495	42110	401089	387996	400073	17062
S051_44	Affected/Female	22293	5128	36012	26083	38486	475328	410951	371971	18243
S053 11	Affected/Female	12268	4303	24253	21592	52598	385859	259803	369865	16433
S057_1	Affected/Female	26327	7078	29278	21698	61240	504927	420130	390436	28532
S059_28	Affected/Female	3859	2676	1881	2439	31575	296196	186595	106324	2445

File format required:

Column 1: sample names Column 2: group identifier (letters, numbers or text) Columns 3 to n: Variables

> This is an option to analyze your own dataset (as opposed to a submitted NMDR study)

Home Da	a Repository Databases P	rotocols Tools Training / Events [®] About Search
Overview Uple	oad / Manage Studies Browse / Sear	ch Studies I had analyze your own dataset
Analyz	e Studies	Analyze Studies
		MS Searches
Analyze stu	idies using Jupyter Notebooks or the	^{a following o} REST Service
MS/NMF	studies identifying named	metaboli External Tools (Links)
Select a s	tudy for analysis:	
Select a s	udy	
Submit		
Analysis to	ools may also be accessed from w	vithin each study page using the 'Perform statistical analysis' link
Compar	ative analysis across studie	25
• Per	orm meta-analysis on selected stur	dies (compare ratios of 2 selected metabolites)
• Cor	pare list of metabolites in 2 selecte	ed studies (all analyses)
• Con	pare list of metabolites in 2 selecte	ed studies (individual analyses)
MS unta	rgeted experiments contain	ing unidentified ions
• Sea	rch Untargeted MS data by m/z, rete	ention time, instrumentation
• Sup	erimpose unknown m/z on RefMet r	mass defect plot
Perform	data analysis on user-uploa	aded data
• Loa	d and analyze your own dataset	
	Volcano Plot	Witcome juit grouped by methods for closs
2	analyzementation - close (1) (2) (2) (2)	
and the second second		
1000	A Construction of the cons	
•		
	kgt Feid Ownge	Gesthelerate
U	aturated R	Burgentaanly aftered massaolin classes (O vs control I samine I samine
	Hydrary R	1993-1997 1995 1997 1997 1996 1997 1997 1997 1997 1997 1997 1997 1997
	LPI and and a second se	
Dicar	Pytragre thory	N N
Dice	Amino acido	Un and a second an
Dice Nac/	Athrate Day Constraints of the C	

Analysis tools available on user-uploaded data

(these are NOT submitted studies -a data table is uploaded via a form)

Normalization and scaling

Sample normalization Analyte scaling Relative log abundance plot

Bargraphs and Boxplots

Bargraph Bargraph ratio Boxplot

Univariate Analysis

Volcano Plot ANOVA analysis Debiased sparse partial correlation analysis

Clustering and Correlation

Hierarchical Cluster Analysis Pearson Correlation: Clustered correlation analysis

Multivariate Analysis

Principal Component Analysis Linear Discriminant Analysis

Classification and Feature Analysis

OPLS-DA/VIP analysis Random Forest/VIP analysis Mapping of input metabolite names to RefMet facilitates enables deployment of classification tools

Perform data analysis on user-uploaded data								
STEP 1: Load your data file (tab-delimited tex	t file or csv file) Load example file Classify metabolite names via R	efMet						
File format required: Column 1: sample names Column 2: group identifier (letters, numbers o Columns 3 to n: Variables View input file	or text)							
STEP 2: Choose a method below								
	Normalization and scaling							
		Create						
Analyte scaling	Scaling method: Level 🗸	Create						
Relative log abundance plot	Use originial dataset	Create						
	Bargraphs and Boxplots							
Bargraph	: ANALYTE: CAR(16:0) V	Create						
Bargraph ratio	ANALYTE1: CAR(16:0) V ANALYTE2: CAR(16:0) V	Create						
Boxplot	ANALYTE: CAR(16:0)	Create						
	Univariate Analysis							
Volcano Plot	The members of each group should be DIFFERENT. Group1 Experimental factor Group2 Affected/Female(21) Affected/Male(20) Control/Female(17) Control/Male(13) QC-test(3)							
	P-value cutoff: 0.05 V Fold-change cutoff: 1.5 V	Create						
ANOVA analysis	Select 2 or more experimental factors for ANOVA analysis. Group Experimental factor Affected/Female(21) Affected/Male(20) Control/Female(17) QC-test(3)							
	P-value cutoff: 0.05 v	Create						
	Select groups for DSPC analysis.							
	Group Experimental factor							
	Affected/Female(21)							

Metabolomics Tools:→Load and analyze your own dataset

Examples of output from online tools

Unweighted enrichment by metabolite class

(View P-value weighted Class Enrichment) (View Class Enrichment by hypergeometric distribution) (View Class Enrichment by Kolmorogov-Smirnov test)

