#METABOLOMICS WORKBENCH TruxalCarlson_20200324_121313 DATATRACK_ID:1951 STUDY_ID:ST001393 ANALYSIS_ID:AN002325 PROJECT_ID:PR000956 VERSION 1 CREATED_ON June 4, 2020, 4:06 pm #PROJECT PR:PROJECT_TITLE Sea-ice diatom compatible solute shifts PR:PROJECT_TYPE Marine Metabolomics PR:PROJECT_SUMMARY Sea-ice algae provide an important source of primary production in polar PR:PROJECT_SUMMARY regions, yet we have limited understanding of their responses to the seasonal PR:PROJECT_SUMMARY cycling of temperature and salinity. Using a targeted liquid chromatography-mass PR:PROJECT_SUMMARY spectrometry-based metabolomics approach, we found that axenic cultures of the PR:PROJECT_SUMMARY Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in PR:PROJECT_SUMMARY their metabolomes when grown in a matrix of conditions that included PR:PROJECT_SUMMARY temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively PR:PROJECT_SUMMARY small changes in growth rate. Temperature exerted a greater effect than salinity PR:PROJECT_SUMMARY on cellular metabolite pool sizes, though the N- or S-containing compatible PR:PROJECT_SUMMARY solutes, 2,3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT), PR:PROJECT_SUMMARY dimethylsulfoniopropionate (DMSP), and proline responded strongly to both PR:PROJECT_SUMMARY temperature and salinity, suggesting complexity in their control. We saw the PR:PROJECT_SUMMARY largest (> 4 fold) response to salinity for proline. DHPS, a rarely studied but PR:PROJECT_SUMMARY potential compatible solute, reached the highest intracellular compatible solute PR:PROJECT_SUMMARY concentrations of ~ 85 mM. When comparing the culture findings to natural Arctic PR:PROJECT_SUMMARY sea-ice diatom communities, we found extensive overlap in metabolite profiles, PR:PROJECT_SUMMARY highlighting the relevance of culture-based studies to probe environmental PR:PROJECT_SUMMARY questions. Large changes in sea-ice diatom metabolomes and compatible solutes PR:PROJECT_SUMMARY over a seasonal cycle could be significant components of biogeochemical cycling PR:PROJECT_SUMMARY within sea ice. PR:INSTITUTE University of Washington PR:DEPARTMENT School of Oceanography PR:LABORATORY Ingalls Lab PR:LAST_NAME Dawson PR:FIRST_NAME Hannah PR:ADDRESS 1501 NE Boat Street, Marine Science Building, Room G, Seattle, WA 98195 PR:EMAIL hmdawson@uw.edu PR:PHONE 2062216750 PR:FUNDING_SOURCE Booth Foundation, NSF, UW Graduate Top Scholar Award, Gordon and Betty Moore PR:FUNDING_SOURCE Foundation PR:PUBLICATIONS Dawson et al., Elementa #STUDY ST:STUDY_TITLE Sea-ice diatom compatible solute shifts ST:STUDY_TYPE Compatible solutes were quantified in sea-ice diatoms ST:STUDY_SUMMARY Sea-ice algae provide an important source of primary production in polar ST:STUDY_SUMMARY regions, yet we have limited understanding of their responses to the seasonal ST:STUDY_SUMMARY cycling of temperature and salinity. Using a targeted liquid chromatography-mass ST:STUDY_SUMMARY spectrometry-based metabolomics approach, we found that axenic cultures of the ST:STUDY_SUMMARY Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in ST:STUDY_SUMMARY their metabolomes when grown in a matrix of conditions that included ST:STUDY_SUMMARY temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively ST:STUDY_SUMMARY small changes in growth rate. Temperature exerted a greater effect than salinity ST:STUDY_SUMMARY on cellular metabolite pool sizes, though the N- or S-containing compatible ST:STUDY_SUMMARY solutes, 2,3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT), ST:STUDY_SUMMARY dimethylsulfoniopropionate (DMSP), and proline responded strongly to both ST:STUDY_SUMMARY temperature and salinity, suggesting complexity in their control. We saw the ST:STUDY_SUMMARY largest (> 4 fold) response to salinity for proline. DHPS, a rarely studied but ST:STUDY_SUMMARY potential compatible solute, reached the highest intracellular compatible solute ST:STUDY_SUMMARY concentrations of ~ 85 mM. When comparing the culture findings to natural Arctic ST:STUDY_SUMMARY sea-ice diatom communities, we found extensive overlap in metabolite profiles, ST:STUDY_SUMMARY highlighting the relevance of culture-based studies to probe environmental ST:STUDY_SUMMARY questions. Large changes in sea-ice diatom metabolomes and compatible solutes ST:STUDY_SUMMARY over a seasonal cycle could be significant components of biogeochemical cycling ST:STUDY_SUMMARY within sea ice. ST:INSTITUTE University of Washington ST:DEPARTMENT School of Oceanography ST:LABORATORY Ingalls Lab ST:LAST_NAME Dawson ST:FIRST_NAME Hannah ST:ADDRESS 1501 NE Boat Street, Marine Science Building, Room G, Seattle, WA 98195 ST:EMAIL hmdawson@uw.edu ST:PHONE 2062216750 ST:PUBLICATIONS Dawson et al., Elementa #SUBJECT SU:SUBJECT_TYPE Other SU:SUBJECT_SPECIES Nitzschia lecointei SU:TAXONOMY_ID 186028 SU:GENDER Not applicable #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data SUBJECT_SAMPLE_FACTORS - 32ppt-1C_A Type:Smp | Salinity:32 | Temp_degC:-1 Replicate=A; RFU=605.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_A;170413_Smp_40ppt4C_C;170410_Smp_32ppt-1C_A SUBJECT_SAMPLE_FACTORS - 32ppt-1C_B Type:Smp | Salinity:32 | Temp_degC:-1 Replicate=B; RFU=551.2; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_B;170413_Smp_32ppt-1C_B;170410_Smp_32ppt-1C_B SUBJECT_SAMPLE_FACTORS - 32ppt-1C_C Type:Smp | Salinity:32 | Temp_degC:-1 Replicate=C; RFU=550.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_C;170413_Smp_32ppt-1C_C;170410_Smp_32ppt-1C_C SUBJECT_SAMPLE_FACTORS - 32ppt4C_A Type:Smp | Salinity:32 | Temp_degC:4 Replicate=A; RFU=847.1; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_A;170413_Smp_32ppt4C_B;170410_Smp_32ppt4C_A SUBJECT_SAMPLE_FACTORS - 32ppt4C_B Type:Smp | Salinity:32 | Temp_degC:4 Replicate=B; RFU=967.1; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_B;170413_Smp_32ppt4C_A;170410_Smp_32ppt4C_B SUBJECT_SAMPLE_FACTORS - 32ppt4C_C Type:Smp | Salinity:32 | Temp_degC:4 Replicate=C; RFU=918.5; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_C;170413_Smp_32ppt4C_C;170410_Smp_32ppt4C_C SUBJECT_SAMPLE_FACTORS - 40ppt-1C_A Type:Smp | Salinity:40 | Temp_degC:-1 Replicate=A; RFU=860.2; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_A;170413_Smp_40ppt-1C_A;170410_Smp_40ppt-1C_A SUBJECT_SAMPLE_FACTORS - 40ppt-1C_B Type:Smp | Salinity:40 | Temp_degC:-1 Replicate=B; RFU=681.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_B;170413_Smp_40ppt4C_B;170410_Smp_40ppt-1C_B SUBJECT_SAMPLE_FACTORS - 40ppt-1C_C Type:Smp | Salinity:40 | Temp_degC:-1 Replicate=C; RFU=814.3; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_C;170413_Smp_40ppt-1C_C;170410_Smp_40ppt-1C_C SUBJECT_SAMPLE_FACTORS - 40ppt4C_A Type:Smp | Salinity:40 | Temp_degC:4 Replicate=A; RFU=581.8; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_A;170413_Smp_40ppt4C_A;170410_Smp_40ppt4C_A SUBJECT_SAMPLE_FACTORS - 40ppt4C_B Type:Smp | Salinity:40 | Temp_degC:4 Replicate=B; RFU=681.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_B;170413_Smp_40ppt-1C_B;170410_Smp_40ppt4C_B SUBJECT_SAMPLE_FACTORS - 40ppt4C_C Type:Smp | Salinity:40 | Temp_degC:4 Replicate=C; RFU=662; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_C;170413_Smp_32ppt-1C_A;170410_Smp_40ppt4C_C SUBJECT_SAMPLE_FACTORS - ASWFilterBlk_1 Type:Blk | Salinity:NA | Temp_degC:NA Replicate=1; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_1;170615_Blk_ASWFilterBlk_1;170612_Blk_ASWFilterBlk_1 SUBJECT_SAMPLE_FACTORS - ASWFilterBlk_2 Type:Blk | Salinity:NA | Temp_degC:NA Replicate=2; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_2;170615_Blk_ASWFilterBlk_2;170612_Blk_ASWFilterBlk_2 SUBJECT_SAMPLE_FACTORS - ASWFilterBlk_3 Type:Blk | Salinity:NA | Temp_degC:NA Replicate=3; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_3;170615_Blk_ASWFilterBlk_3;170612_Blk_ASWFilterBlk_3 SUBJECT_SAMPLE_FACTORS - MediaBlk_ppt32 Type:Blk | Salinity:32 | Temp_degC:NA Replicate=ppt32; RFU=1; Vol_L=0.07; RAW_FILE_NAME=170410_Blk_MediaBlk_ppt32;170413_Blk_MediaBlk_ppt32;170410_Blk_MediaBlk_ppt32 SUBJECT_SAMPLE_FACTORS - MediaBlk_ppt40 Type:Blk | Salinity:40 | Temp_degC:NA Replicate=ppt40; RFU=1; Vol_L=0.07; RAW_FILE_NAME=170410_Blk_MediaBlk_ppt40;170413_Blk_MediaBlk_ppt40;170410_Blk_MediaBlk_ppt40 SUBJECT_SAMPLE_FACTORS - S2C_4 Type:Smp | Salinity:NA | Temp_degC:NA Replicate=4; RFU=NA; Vol_L=0.1671; RAW_FILE_NAME=170612_Smp_S2C_4;170615_Smp_S2C_4;170612_Smp_S2C_4 SUBJECT_SAMPLE_FACTORS - S2C_5 Type:Smp | Salinity:NA | Temp_degC:NA Replicate=5; RFU=NA; Vol_L=0.2486; RAW_FILE_NAME=170612_Smp_S2C_5;170615_Smp_S2C_5;170612_Smp_S2C_5 SUBJECT_SAMPLE_FACTORS - S2C_6 Type:Smp | Salinity:NA | Temp_degC:NA Replicate=6; RFU=NA; Vol_L=0.2049; RAW_FILE_NAME=170612_Smp_S2C_6;170615_Smp_S2C_6;170612_Smp_S2C_6 #COLLECTION CO:COLLECTION_SUMMARY Cultured diatom cells at different salinities and temperatures grown to CO:COLLECTION_SUMMARY exponential phase were filtered onto 0.2-micron filters and extracted for CO:COLLECTION_SUMMARY metabolites as described in methods. Three dedicated ice cores were sampled from CO:COLLECTION_SUMMARY the Chukchi Sea near Utqiaġvik, AK. The bottom 5-cm sections were placed in CO:COLLECTION_SUMMARY polycarbonate tubs, allowed to melt at 4°C in artificial seawater, and filtered CO:COLLECTION_SUMMARY onto 0.2-micron filters. Filters were extracted for metabolites as described in CO:COLLECTION_SUMMARY methods. All filters were frozen in liquid nitrogen immediately after filtration CO:COLLECTION_SUMMARY and stored in a -80 C freezer until extraction. CO:SAMPLE_TYPE Diatom cells/Particulate matter from sea ice cores CO:STORAGE_CONDITIONS Described in summary #TREATMENT TR:TREATMENT_SUMMARY Diatom cells were cultured in a matrix of two temperatures (–1°C and 4°C) TR:TREATMENT_SUMMARY and two salinities (32 and 40) in triplicate. There was no treatment for the sea TR:TREATMENT_SUMMARY ice cores – this was a study of how the cultured diatoms compare to the TR:TREATMENT_SUMMARY diatom-dominated Arctic sea-ice communities. #SAMPLEPREP SP:SAMPLEPREP_SUMMARY Each sample was extracted using a modified Bligh-Dyer extraction. Briefly, SP:SAMPLEPREP_SUMMARY filters were cut up and put into 15 mL teflon centrifuge tubes containing a SP:SAMPLEPREP_SUMMARY mixture of 100 µm and 400 µm silica beads. Heavy isotope-labeled internal SP:SAMPLEPREP_SUMMARY standards were added along with ~2 mL of cold aqueous solvent (50:50 SP:SAMPLEPREP_SUMMARY methanol:water) and ~3 mL of cold organic solvent (dichloromethane). The samples SP:SAMPLEPREP_SUMMARY were shaken on a FastPrep-24 Homogenizer for 30 seconds and chilled in a -20 °C SP:SAMPLEPREP_SUMMARY freezer repeatedly for three cycles of bead-beating and a total of 30 minutes of SP:SAMPLEPREP_SUMMARY chilling. The organic and aqueous layers were separated by spinning samples in a SP:SAMPLEPREP_SUMMARY centrifuge at 4,300 rpm for 2 minutes at 4 °C. The aqueous layer was removed to SP:SAMPLEPREP_SUMMARY a new glass centrifuge tube. The remaining organic fraction was rinsed three SP:SAMPLEPREP_SUMMARY more times with additions of 1 to 2 mL of 50:50 methanol:water. All aqueous SP:SAMPLEPREP_SUMMARY rinses were combined for each sample and dried down under N2 gas. The remaining SP:SAMPLEPREP_SUMMARY organic layer was transferred into a clean glass centrifuge tube and the SP:SAMPLEPREP_SUMMARY remaining bead beating tube was rinsed two more times with cold organic solvent. SP:SAMPLEPREP_SUMMARY The combined organic rinses were centrifuged, transferred to a new tube, and SP:SAMPLEPREP_SUMMARY dried under N2 gas. Dried aqueous fractions were re-dissolved in 380 µL of SP:SAMPLEPREP_SUMMARY water. Dried organic fractions were re-dissolved in 380 µL of 1:1 SP:SAMPLEPREP_SUMMARY water:acetonitrile. 20 µL of isotope-labeled injection standards in water were SP:SAMPLEPREP_SUMMARY added to both fractions. Blank filters were extracted alongside samples as SP:SAMPLEPREP_SUMMARY methodological blanks. SP:PROCESSING_STORAGE_CONDITIONS On ice SP:EXTRACTION_METHOD Bligh-Dyer SP:EXTRACT_STORAGE -80℃ #CHROMATOGRAPHY CH:CHROMATOGRAPHY_SUMMARY See attached summary CH:CHROMATOGRAPHY_TYPE HILIC CH:INSTRUMENT_NAME Waters Acquity I-Class CH:COLUMN_NAME SeQuant ZIC- pHILIC (150 x 2.1mm, 5um) #ANALYSIS AN:ANALYSIS_TYPE MS #MS MS:INSTRUMENT_NAME Waters Xevo-TQ-S MS:INSTRUMENT_TYPE Triple quadrupole MS:MS_TYPE ESI MS:ION_MODE NEGATIVE MS:MS_COMMENTS See protocol, data from culture samples #MS_METABOLITE_DATA MS_METABOLITE_DATA:UNITS Normalized Peak Area Per RFU MS_METABOLITE_DATA_START Samples 32ppt-1C_A 32ppt-1C_B 32ppt-1C_C 32ppt4C_A 32ppt4C_B 32ppt4C_C 40ppt-1C_A 40ppt-1C_B 40ppt-1C_C 40ppt4C_A 40ppt4C_B 40ppt4C_C MediaBlk_ppt32 MediaBlk_ppt40 Factors Type:Smp | Salinity:32 | Temp_degC:-1 Type:Smp | Salinity:32 | Temp_degC:-1 Type:Smp | Salinity:32 | Temp_degC:-1 Type:Smp | Salinity:32 | Temp_degC:4 Type:Smp | Salinity:32 | Temp_degC:4 Type:Smp | Salinity:32 | Temp_degC:4 Type:Smp | Salinity:40 | Temp_degC:-1 Type:Smp | Salinity:40 | Temp_degC:-1 Type:Smp | Salinity:40 | Temp_degC:-1 Type:Smp | Salinity:40 | Temp_degC:4 Type:Smp | Salinity:40 | Temp_degC:4 Type:Smp | Salinity:40 | Temp_degC:4 Type:Blk | Salinity:32 | Temp_degC:NA Type:Blk | Salinity:40 | Temp_degC:NA Aconitic Acid 1263.206737 1330.517054 1525.375954 6681.110849 6474.158825 7927.185629 1285.25808 1886.373239 1340.099472 6133.619801 5163.460974 5108.241692 171982 102632 ADP 9076.560436 9174.027576 11458.33273 4501.291465 4005.127701 4133.589548 4626.076494 6930.001467 5849.626673 5410.374699 3959.60534 5280.800604 49500 50730 AMP 15647.28057 16508.23288 14784.1824 6556.047023 6786.442885 8962.662085 12663.98877 12547.87362 12096.30462 8473.951746 6278.09343 6152.730136 11689.61315 255.4252162 Citric Acid 116700.8454 123484.5138 139497.4936 154071.1227 148818.3145 143974.7066 119619.2978 194108.885 181242.8835 340577.2705 290672.6761 289004.6647 388193 744760 Cysteic Acid 4832.253334 5722.604683 5176.295614 3434.963754 2329.601737 4298.379048 2741.272711 2677.123191 2465.475131 3088.840194 2576.392243 2437.280264 436.0600303 1619.88348 FAD 1372.308454 1233.70283 1456.834363 566.7382836 803.3564264 841.7397931 1283.29342 1116.075411 1060.185435 1178.358542 1062.009977 728.9833837 317 0 Fructose 6 phosphate 6760.885073 7952.982583 7254.249909 2899.308228 2683.409161 2946.42896 4891.946059 6252.388498 5757.187769 3762.67274 3612.46919 3597.596677 0 0 Fumaric Acid 1078.475536 632.071887 847.6615919 906.3160467 948.2091 987.6933845 851.0465223 927.3983303 807.0077496 1857.750615 1506.929334 1296.148327 113586.0898 156504.3041 Glucose 6 phosphate 8133.395109 4908.892141 5793.203649 2361.567735 2176.584979 4102.695545 5969.648812 6183.643549 4116.603769 4754.723912 2342.236406 2763.546669 0 0 GMP 2245.35876 2210.082222 1544.809839 858.6941814 672.7208023 985.4606528 1041.076709 1474.490744 1469.892004 627.7900636 646.1536894 424.2393101 1490.50495 16920.06661 Isethionic Acid 3225.331263 3120.565878 3840.465668 3230.43936 2960.779245 2694.32524 2716.719258 2730.978169 2719.035329 3968.483945 3189.704633 2981.343938 633432.7492 460560.6315 Ketoglutaric Acid 10055.25594 10586.15747 9995.005449 14457.25062 14892.48785 14009.07676 7615.503371 9935.720364 9117.740391 55469.0581 41094.74765 47114.54079 686309 381871 Malic Acid 25885.36328 26438.83164 29470.3814 17033.77169 14204.50832 15734.63364 14921.43688 19709.84008 19368.04495 33894.13544 26757.87265 30998.79154 5452386 5576339 NAD 4485.297226 4202.666909 5144.976389 2080.30693 1988.523421 2314.366903 2902.137875 3383.302523 2496.260592 2800.37298 2296.087148 2328.318731 303 0 NADP 2210.701783 2185.968795 2488.545223 941.7270688 406.774894 932.9014698 1382.099512 1985.909624 1089.180892 774.4173255 1161.135563 1094.889728 8315 412 PEP 217.5247688 477.6124819 169.3152924 1203.262897 823.7286734 420.6782798 766.0020925 624.320716 615.857792 868.0955655 623.254108 438.2628399 0 328 Sucrose 108.2527623 224.9555784 143.0574114 220.4839809 75.98541294 160.1613044 176.4782868 216.4963521 49.42474202 455.9872583 144.1909943 298.5633866 22352.58848 15075.92414 Sulfolactic acid 831.3973859 468.7565288 1088.827825 1078.611068 792.9825462 1397.23466 279.1883929 561.9641403 513.1318111 1645.035968 1542.51837 1363.746939 500880.5501 190826.2302 Taurine 3319.118666 4755.744292 3556.810071 11390.33656 10806.75736 11009.43603 3073.460343 4292.506067 3837.621743 13349.52972 10736.922 7878.686724 290.7021424 4544.629275 UDP-glucosamine 996.243395 961.9031205 1067.210316 479.1524023 536.2092855 506.9319543 553.7293653 1001.561033 723.9260715 1067.581643 721.0651408 650.9728097 275 0 UDP-glucose 11073.59974 10948.97859 7839.822012 887.8455908 3765.494778 2860.444203 6348.285282 7688.048709 6503.571165 2970.300791 3872.998826 2244.850453 0 0 Uridine 750.3352048 723.9096517 612.4772975 1165.083225 755.9342364 1288.476864 306.9065334 716.8559272 586.0628761 2071.6088 1193.588615 1136.723565 7967 1536 MS_METABOLITE_DATA_END #METABOLITES METABOLITES_START metabolite_name quantitated m/z KEGGNAME CHEBI MS_method KEGG ID Aconitic Acid 173.008615 cis-Aconitate; cis-Aconitic acid CHEBI:32805 HILIC_TQS_Neg C00417 ADP 426.021596 ADP; Adenosine 5'-diphosphate CHEBI:16761 HILIC_TQS_Neg C00008 AMP 346.055262 AMP; Adenosine 5'-monophosphate; Adenylic acid; Adenylate; 5'-AMP; 5'-Adenylic acid; 5'-Adenosine monophosphate; Adenosine 5'-phosphate CHEBI:16027 HILIC_TQS_Neg C00020 Citric Acid 191.01918 Citrate; Citric acid; 2-Hydroxy-1,2,3-propanetricarboxylic acid; 2-Hydroxytricarballylic acid CHEBI:30769 HILIC_TQS_Neg C00158 Cysteic Acid 167.996671 L-Cysteate; L-Cysteic acid; 3-Sulfoalanine; 2-Amino-3-sulfopropionic acid CHEBI:17285 HILIC_TQS_Neg C00506 FAD 784.149317 F.D Flavin adenine dinucleotide CHEBI:16238 HILIC_TQS_Neg C00016 Fructose 6 phosphate 259.021897 D-Fructose 6-phosphate; D-Fructose 6-phosphoric acid; Neuberg ester CHEBI:15946 HILIC_TQS_Neg C00085 Fumaric Acid 115.003135 Fumarate; Fumaric acid; trans-Butenedioic acid CHEBI:18012 HILIC_TQS_Neg C00122 Glucose 6 phosphate 259.021897 D-Glucose 6-phosphate; Glucose 6-phosphate; Robison ester CHEBI:17665 HILIC_TQS_Neg C00092 GMP 362.050178 GMP; Guanosine 5'-phosphate; Guanosine monophosphate; Guanosine 5'-monophosphate; Guanylic acid CHEBI:17345 HILIC_TQS_Neg C00144 Isethionic Acid 124.990857 2-Hydroxyethanesulfonate; 2-Hydroxyethanesulfonic acid; 2-Hydroxyethane-1-sulfonic acid; Isethionic acid; Isethionate CHEBI:1157 HILIC_TQS_Neg C05123 Ketoglutaric Acid 145.0137 2-Oxoglutarate; Oxoglutaric acid; 2-Ketoglutaric acid; alpha-Ketoglutaric acid CHEBI:30915 HILIC_TQS_Neg C00026 Malic Acid 133.0137 (S)-Malate; L-Malate; L-Apple acid; L-Malic acid; L-2-Hydroxybutanedioic acid; Malate; Malic acid CHEBI:6650 HILIC_TQS_Neg C00149 NAD 662.101304 NAD+; N.D Nicotinamide adenine dinucleotide; DPN; Diphosphopyridine nucleotide; Nadide; beta-NAD+ CHEBI:15846 HILIC_TQS_Neg C00003 NADP 742.067637 NADP+; NADP; Nicotinamide adenine dinucleotide phosphate; beta-Nicotinamide adenine dinucleotide phosphate; TPN; Triphosphopyridine nucleotide; beta-NADP+ CHEBI:18009 HILIC_TQS_Neg C00006 PEP 166.974553 Phosphoenolpyruvate; Phosphoenolpyruvic acid; PEP CHEBI:18021 HILIC_TQS_Neg C00074 Sucrose 341.10839 Sucrose; Cane sugar; Saccharose; 1-alpha-D-Glucopyranosyl-2-beta-D-fructofuranoside CHEBI:17992 HILIC_TQS_Neg C00089 Sulfolactic acid 168.980687 3-Sulfolactate CHEBI:50519 HILIC_TQS_Neg C16069 Taurine 124.006841 Taurine; 2-Aminoethanesulfonic acid; Aminoethylsulfonic acid CHEBI:15891 HILIC_TQS_Neg C00245 UDP-glucosamine 606.073753 UDP-N-acetyl-alpha-D-glucosamine; UDP-N-acetyl-D-glucosamine; UDP-N-acetylglucosamine CHEBI:16264 HILIC_TQS_Neg C00043 UDP-glucose 565.047204 UDP-glucose; UDPglucose; UDP-D-glucose; Uridine diphosphate glucose; UDP-alpha-D-glucose CHEBI:18066 HILIC_TQS_Neg C00029 Uridine 243.061713 Uridine CHEBI:16704 HILIC_TQS_Neg C00299 METABOLITES_END #END