#METABOLOMICS WORKBENCH Kaori_20250611_221809 DATATRACK_ID:6030 STUDY_ID:ST003987 ANALYSIS_ID:AN006568 PROJECT_ID:PR002491 VERSION 1 CREATED_ON June 17, 2025, 1:08 am #PROJECT PR:PROJECT_TITLE Glucose-activated JMJD1A drives visceral adipogenesis via PR:PROJECT_TITLE α-ketoglutarate-dependent chromatin remodeling PR:PROJECT_SUMMARY Understanding how extracellular glucose regulates adipose tissue remodeling is PR:PROJECT_SUMMARY key to decoding metabolic health. Here, we show that the histone demethylase PR:PROJECT_SUMMARY JMJD1A senses glucose availability via α-ketoglutarate (α-KG), a TCA cycle PR:PROJECT_SUMMARY metabolite derived from glycolysis. Upon glucose stimulation, α-KG accumulates PR:PROJECT_SUMMARY in the nucleus and activates JMJD1A to remove repressive H3K9me2 marks at PR:PROJECT_SUMMARY glycolytic and adipogenic gene loci, including Pparg. This initiates a PR:PROJECT_SUMMARY transcriptional feedforward loop that amplifies glycolysis and de novo PR:PROJECT_SUMMARY adipogenesis. Mechanistically, JMJD1A is pre-recruited to chromatin by NFIC, and PR:PROJECT_SUMMARY glucose-induced demethylation enables subsequent ChREBP binding. In vivo, mice PR:PROJECT_SUMMARY lacking JMJD1A in adipocyte precursors exhibit impaired adipose tissue PR:PROJECT_SUMMARY hyperplasia and compensatory hypertrophic expansion selectively in visceral fat, PR:PROJECT_SUMMARY resulting in metabolically unfavorable remodeling. These findings uncover a PR:PROJECT_SUMMARY glucose-sensing α-KG-JMJD1A pathway that regulates histone demethylation and de PR:PROJECT_SUMMARY novo adipogenesis, enabling adaptive expansion of visceral adipose tissue under PR:PROJECT_SUMMARY nutrient excess conditions. PR:INSTITUTE Tohoku University PR:LAST_NAME Sakai PR:FIRST_NAME Juro PR:ADDRESS 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan PR:EMAIL juro.sakai.b6@tohoku.ac.jp PR:PHONE +81-22-717-8117 #STUDY ST:STUDY_TITLE Glucose-activated JMJD1A drives visceral adipogenesis via ST:STUDY_TITLE α-ketoglutarate-dependent chromatin remodeling (Study part 6 of 6) ST:STUDY_SUMMARY Understanding how extracellular glucose regulates adipose tissue remodeling is ST:STUDY_SUMMARY key to decoding metabolic health. Here, we show that the ST:INSTITUTE Tohoku University ST:LAST_NAME Sakai ST:FIRST_NAME Juro ST:ADDRESS 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan ST:EMAIL juro.sakai.b6@tohoku.ac.jp ST:PHONE +81-22-717-8117 ST:STUDY_COMMENTS Figure S1I #SUBJECT SU:SUBJECT_TYPE Cultured cells SU:SUBJECT_SPECIES Mus musculus SU:TAXONOMY_ID 10090 #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data SUBJECT_SAMPLE_FACTORS 16 3T3-L1_0h Sample source:3T3-L1 | Treatment:13C6-Glucose RAW_FILE_NAME(Lipid)=TSOGA038_p_20241106_Sample_16.mzML SUBJECT_SAMPLE_FACTORS 17 3T3-L1_1h Sample source:3T3-L1 | Treatment:13C6-Glucose RAW_FILE_NAME(Lipid)=TSOGA038_p_20241106_Sample_17.mzML SUBJECT_SAMPLE_FACTORS 18 3T3-L1_2h Sample source:3T3-L1 | Treatment:13C6-Glucose RAW_FILE_NAME(Lipid)=TSOGA038_p_20241106_Sample_18.mzML SUBJECT_SAMPLE_FACTORS 19 3T3-L1_4h Sample source:3T3-L1 | Treatment:13C6-Glucose RAW_FILE_NAME(Lipid)=TSOGA038_p_20241106_Sample_19.mzML #COLLECTION CO:COLLECTION_SUMMARY 3T3-L1 cells were washed twice with 5% mannitol before metabolite extraction. CO:COLLECTION_SUMMARY Aqueous metabolites were extracted with 400 µL of methanol containing three CO:COLLECTION_SUMMARY internal standards (3ISs; methionine sulfone, 2-(N-morpholino)ethanesulfonic CO:COLLECTION_SUMMARY acid [MES] and D-camphol-10-sulfonic acid [CSA]; 25 µM each) at room CO:COLLECTION_SUMMARY temperature for 10 min. Then 400 µL chloroform and 200 µL of water were added, CO:COLLECTION_SUMMARY and the solution was centrifuged at 10,000 × g for 3 min at 4 ºC. The upper CO:COLLECTION_SUMMARY aqueous layer (400 µL) was filtered through a 5 kDa cutoff filter (Millipore), CO:COLLECTION_SUMMARY and the filtrate was stored at -80 ºC until analysis. At the teime of analysis, CO:COLLECTION_SUMMARY the filtrate was thawed and centrifugally concentrated and dissolved in 25 µL CO:COLLECTION_SUMMARY of water containing reference compounds (3-aminopyrrolidine and CO:COLLECTION_SUMMARY 1,3,5-benzenetricarboxylic acid; 200 µM each). CO:SAMPLE_TYPE Cultured cells #TREATMENT TR:TREATMENT_SUMMARY 3T3-L1 preadipocytes were differentiated with MDI mixture until day 4 and TR:TREATMENT_SUMMARY treated with 25 mM 13C glucose. #SAMPLEPREP SP:SAMPLEPREP_SUMMARY containing 25 µM internal standards for 10 min. 400 µL of the resulting SP:SAMPLEPREP_SUMMARY extracts were mixed with 200 µL of Milli-Q water and 400 µL of SP:SAMPLEPREP_SUMMARY chloroform.After centrifuge at 10,000xg for 3 min at 4°C, the upper 400 µL SP:SAMPLEPREP_SUMMARY water layer was used for CE-MS analysis and 600 µL of methanol containing 2 µM SP:SAMPLEPREP_SUMMARY reserpine was added to the remaining chloroform layer and vortex for 10 min. SP:SAMPLEPREP_SUMMARY After centrifuge at 10,000xg for 20 min at 4°C again, the supernatant was SP:SAMPLEPREP_SUMMARY transferred to a sample vial for LC-MS measurement. #CHROMATOGRAPHY CH:CHROMATOGRAPHY_TYPE Reversed phase CH:INSTRUMENT_NAME Agilent 1290 Infinity CH:COLUMN_NAME Waters ACQUITY UPLC HSS T3 (50 x 2.1mm,1.8um) CH:SOLVENT_A 5 mM Ammonium Formate / Water : Methanol : Acetonitrile = 3:1:1 CH:SOLVENT_B 5 mM Ammonium Formate / 2-propanol CH:FLOW_GRADIENT 0.0 min 0 % B, 5.0 min 40% B, 7.5-12.0 min 64% B, 12.5 min 82.5% B, 19.0 min 85 CH:FLOW_GRADIENT % B, 20.0 min 95% B CH:FLOW_RATE 0.3 mL/min CH:COLUMN_TEMPERATURE 45℃ #ANALYSIS AN:ANALYSIS_TYPE MS #MS MS:INSTRUMENT_NAME Agilent G6530A MS:INSTRUMENT_TYPE QTOF MS:MS_TYPE ESI MS:ION_MODE POSITIVE MS:MS_COMMENTS ESI- Quadrupole-TOFMS was performed in the positive ion mode. The capillary MS:MS_COMMENTS voltage was set at 3.5 kV, and a nitrogen gas flow rate (heater temperature MS:MS_COMMENTS 350°C) was set at 10 L/min. The Fragmentor voltage was set at 150 V. The MS:MS_COMMENTS spectrometer was scanned from m/z 100 to 1,700. Peaks were extracted using the MS:MS_COMMENTS automatic integration software MasterHands (Keio University, Tsuruoka, MS:MS_COMMENTS Japan)(Sugimoto et al., Metabolomics, 2009). Based on the in-house library, MS:MS_COMMENTS lipids were identified based on retention time and m/z. The relative area was MS:MS_COMMENTS calculated by dividing the area value of each lipid by the area value of MS:MS_COMMENTS Reserpine. #MS_METABOLITE_DATA MS_METABOLITE_DATA:UNITS Relative Area MS_METABOLITE_DATA_START Samples 3T3-L1_0h 3T3-L1_1h 3T3-L1_2h 3T3-L1_4h Factors Sample source:3T3-L1 | Treatment:13C6-Glucose Sample source:3T3-L1 | Treatment:13C6-Glucose Sample source:3T3-L1 | Treatment:13C6-Glucose Sample source:3T3-L1 | Treatment:13C6-Glucose TG 46:3_m+0 1.03 7.95 15.66 3.70 TG 46:3_m+1 1.73 1.62 3.37 7.12 TG 46:3_m+2 1.55 1.51 3.01 2.20 TG 46:3_m+3 0.27 1.46 3.81 3.07 TG 46:3_m+4 N.D. 0.68 1.73 1.63 TG 46:3_m+5 N.D. 0.31 0.88 0.91 TG 46:3_m+6 N.D. 0.16 0.36 0.27 TG 46:3_m+7 N.D. 0.16 0.40 0.65 TG 46:3_m+8 N.D. 0.11 0.33 0.48 TG 46:3_m+9 N.D. 0.11 0.29 0.35 TG 46:3_m+10 N.D. 0.07 0.24 0.33 TG 46:3_m+11 N.D. 0.10 0.27 0.32 TG 46:3_m+12 N.D. 0.08 0.20 0.24 TG 46:3_m+13 N.D. N.D. 0.16 0.19 TG 48:1_m+0 127.57 141.96 196.78 144.92 TG 48:1_m+1 77.81 70.82 100.60 69.82 TG 48:1_m+2 11.11 12.29 22.14 14.68 TG 48:1_m+3 1.15 4.98 9.11 7.93 TG 48:1_m+4 0.13 1.61 3.77 4.18 TG 48:1_m+5 N.D. 0.82 1.86 2.36 TG 48:1_m+6 N.D. 0.53 1.39 2.14 TG 48:1_m+7 N.D. 0.53 1.40 2.02 TG 48:1_m+8 N.D. 0.36 0.96 1.47 TG 48:1_m+9 N.D. 0.40 0.98 1.43 TG 48:1_m+10 N.D. 0.23 0.66 1.03 TG 48:1_m+11 N.D. 0.25 0.67 0.97 TG 48:1_m+12 N.D. N.D. N.D. N.D. TG 48:1_m+13 N.D. N.D. N.D. N.D. TG 48:1_m+14 N.D. N.D. N.D. 0.55 TG 48:1_m+15 N.D. N.D. N.D. N.D. TG 48:1_m+16 N.D. N.D. N.D. N.D. TG 48:1_m+17 N.D. N.D. N.D. N.D. TG 48:2_m+0 220.10 167.33 230.34 173.86 TG 48:2_m+1 109.68 84.23 117.82 85.24 TG 48:2_m+2 18.35 18.02 28.97 23.01 TG 48:2_m+3 2.06 10.67 21.44 19.68 TG 48:2_m+4 N.D. 3.78 9.10 10.67 TG 48:2_m+5 N.D. 1.69 0.06 6.05 TG 48:2_m+6 N.D. 0.88 2.69 4.52 TG 48:2_m+7 N.D. 0.95 2.85 4.21 TG 48:2_m+8 N.D. 0.64 1.92 3.25 TG 48:2_m+9 N.D. 0.78 2.17 3.22 TG 48:2_m+10 N.D. 0.45 1.25 2.05 TG 48:2_m+11 N.D. 0.54 1.36 1.94 TG 48:2_m+12 N.D. 0.39 0.84 1.33 TG 48:2_m+13 N.D. 0.29 0.74 1.08 TG 48:2_m+14 N.D. 0.33 0.60 0.98 TG 48:2_m+15 N.D. 0.27 0.49 0.66 TG 48:2_m+16 N.D. N.D. N.D. 0.45 TG 48:2_m+17 N.D. N.D. 0.23 0.30 TG 48:2_m+18 N.D. N.D. N.D. N.D. TG 48:3_m+0 106.54 80.11 121.86 89.39 TG 48:3_m+1 51.30 40.50 64.60 45.11 TG 48:3_m+2 9.17 8.89 16.14 12.71 TG 48:3_m+3 0.91 8.14 18.45 15.06 TG 48:3_m+4 0.24 3.10 7.83 7.46 TG 48:3_m+5 N.D. 1.27 3.37 3.80 TG 48:3_m+6 N.D. 0.45 1.73 2.54 TG 48:3_m+7 N.D. 0.30 0.93 1.22 TG 48:3_m+8 N.D. 0.17 1.27 1.87 TG 48:3_m+9 N.D. 0.52 1.54 1.58 TG 48:3_m+10 N.D. 0.26 0.86 1.24 TG 48:3_m+11 N.D. 0.33 0.66 0.86 TG 48:3_m+12 N.D. 0.22 0.55 0.76 TG 48:3_m+13 N.D. 0.20 0.55 0.73 TG 48:3_m+14 N.D. 0.20 0.38 0.47 TG 48:3_m+15 N.D. 0.18 0.35 0.31 TG 48:3_m+16 N.D. 0.17 0.27 0.31 TG 48:3_m+17 N.D. 0.14 0.24 0.30 TG 50:1_m+0 70.12 65.53 90.57 60.99 TG 50:1_m+1 32.12 31.97 45.03 28.79 TG 50:1_m+2 5.61 6.61 10.09 7.25 TG 50:1_m+3 0.75 2.78 4.74 4.06 TG 50:1_m+4 0.15 0.40 2.14 2.15 TG 50:1_m+5 0.05 0.56 1.17 1.44 TG 50:1_m+6 0.14 0.32 0.73 0.90 TG 50:1_m+7 0.06 0.28 0.66 0.88 TG 50:1_m+8 N.D. 0.17 0.39 0.60 TG 50:1_m+9 N.D. 0.18 0.42 0.57 TG 50:1_m+10 N.D. 0.09 0.23 0.42 TG 50:1_m+11 N.D. 0.11 0.21 0.34 TG 50:1_m+12 N.D. N.D. N.D. N.D. TG 50:1_m+13 N.D. N.D. N.D. N.D. TG 50:1_m+14 N.D. N.D. N.D. N.D. TG 50:1_m+15 N.D. N.D. N.D. N.D. MS_METABOLITE_DATA_END #METABOLITES METABOLITES_START metabolite_name Average m/z Retention Time (min) TG 46:3_m+0 790.7418 14.76 TG 46:3_m+1 791.7398 14.76 TG 46:3_m+2 792.7045 14.76 TG 46:3_m+3 793.7066 14.76 TG 46:3_m+4 794.7081 14.76 TG 46:3_m+5 795.7213 14.76 TG 46:3_m+6 796.7262 14.76 TG 46:3_m+7 797.7278 14.76 TG 46:3_m+8 798.7182 14.76 TG 46:3_m+9 799.7340 14.76 TG 46:3_m+10 800.7221 14.76 TG 46:3_m+11 801.7313 14.76 TG 46:3_m+12 802.7296 14.77 TG 46:3_m+13 803.7387 14.75 TG 48:1_m+0 822.7557 16.02 TG 48:1_m+1 823.7546 16.02 TG 48:1_m+2 824.7649 16.02 TG 48:1_m+3 825.7624 16.02 TG 48:1_m+4 826.7652 16.02 TG 48:1_m+5 827.7556 16.02 TG 48:1_m+6 828.7709 16.01 TG 48:1_m+7 829.7855 16.01 TG 48:1_m+8 830.7704 16.02 TG 48:1_m+9 831.7825 16.01 TG 48:1_m+10 832.7845 16.02 TG 48:1_m+11 833.7908 16.02 TG 48:1_m+12 834.7921 16.01 TG 48:1_m+13 835.7959 16.02 TG 48:1_m+14 836.7879 16.01 TG 48:1_m+15 837.7995 16.01 TG 48:1_m+16 838.8097 16.02 TG 48:1_m+17 839.8145 16.02 TG 48:2_m+0 820.7318 15.57 TG 48:2_m+1 821.7386 15.58 TG 48:2_m+2 822.7420 15.56 TG 48:2_m+3 823.7514 15.57 TG 48:2_m+4 824.7544 15.57 TG 48:2_m+5 825.7561 15.59 TG 48:2_m+6 826.7566 15.57 TG 48:2_m+7 827.7694 15.57 TG 48:2_m+8 828.7638 15.57 TG 48:2_m+9 829.7665 15.58 TG 48:2_m+10 830.7739 15.57 TG 48:2_m+11 831.7754 15.57 TG 48:2_m+12 832.7840 15.57 TG 48:2_m+13 833.7910 15.57 TG 48:2_m+14 834.7745 15.57 TG 48:2_m+15 835.7798 15.56 TG 48:2_m+16 836.7879 15.56 TG 48:2_m+17 837.7909 15.57 TG 48:2_m+18 838.7888 15.56 TG 48:3_m+0 818.7229 15.18 TG 48:3_m+1 819.7271 15.18 TG 48:3_m+2 820.7365 15.17 TG 48:3_m+3 821.7455 15.18 TG 48:3_m+4 822.7441 15.18 TG 48:3_m+5 823.7430 15.17 TG 48:3_m+6 824.7393 15.17 TG 48:3_m+7 825.7674 15.17 TG 48:3_m+8 826.7575 15.17 TG 48:3_m+9 827.7647 15.17 TG 48:3_m+10 828.7597 15.17 TG 48:3_m+11 829.7734 15.17 TG 48:3_m+12 830.7622 15.16 TG 48:3_m+13 831.7699 15.17 TG 48:3_m+14 832.7683 15.17 TG 48:3_m+15 833.7697 15.17 TG 48:3_m+16 834.7766 15.16 TG 48:3_m+17 835.7798 15.17 TG 50:1_m+0 850.7874 16.64 TG 50:1_m+1 851.7834 16.64 TG 50:1_m+2 852.7904 16.64 TG 50:1_m+3 853.7969 16.63 TG 50:1_m+4 854.7972 16.63 TG 50:1_m+5 855.7947 16.63 TG 50:1_m+6 856.7953 16.63 TG 50:1_m+7 857.7989 16.63 TG 50:1_m+8 858.8090 16.64 TG 50:1_m+9 859.8130 16.64 TG 50:1_m+10 860.8124 16.62 TG 50:1_m+11 861.8165 16.63 TG 50:1_m+12 862.8250 16.64 TG 50:1_m+13 863.8263 16.63 TG 50:1_m+14 864.8249 16.63 TG 50:1_m+15 865.8337 16.64 METABOLITES_END #END