#METABOLOMICS WORKBENCH jdcolter_20250614_090241 DATATRACK_ID:6037 STUDY_ID:ST004071 ANALYSIS_ID:AN006737 PROJECT_ID:PR002556 VERSION 1 CREATED_ON July 18, 2025, 10:56 am #PROJECT PR:PROJECT_TITLE Metabolic perturbation in ependymal cells leads to local and distant PR:PROJECT_TITLE neurodegeneration and cognitive decline PR:PROJECT_TYPE MS Imaging Analysis PR:PROJECT_SUMMARY Ependymal cells (ECs) are specialized multi-ciliated glial cells that line the PR:PROJECT_SUMMARY ventricular system of the brain, regulating cerebrospinal fluid flow (CSF) and PR:PROJECT_SUMMARY the neighbouring neural stem cell (NSC) niche. However, their role in PR:PROJECT_SUMMARY maintaining brain homeostasis or in disease pathogenesis remains unclear. To PR:PROJECT_SUMMARY elucidate their function, we disrupted ependymal glucose metabolism by PR:PROJECT_SUMMARY genetically deleting glucose-transporter-1 (GLUT1/Slc2a1) in postnatal ECs. PR:PROJECT_SUMMARY Analyses were carried out across three separate studies (batches), with one PR:PROJECT_SUMMARY study at 1 month (6 mice) and two studies at 12 months (3 mice, 5 mice). Results PR:PROJECT_SUMMARY from this project confirm CSF flow changes and disrupted NSC differentiation and PR:PROJECT_SUMMARY neuroblast migration. These mice also exhibited periventricular lipid droplet PR:PROJECT_SUMMARY accumulation similar to Alzheimer’s disease brains. Aged cKO mice exhibited PR:PROJECT_SUMMARY progressive cognitive and motor dysfunction, and onset of seizure activity. PR:PROJECT_SUMMARY These behavioral deficits were coincident with various neurodegenerative PR:PROJECT_SUMMARY pathologies, including dysmyelination, microglia-associated inflammation, and PR:PROJECT_SUMMARY lipid imbalance. When combined with metabolic perturbation in ECs, 5xFAD mice PR:PROJECT_SUMMARY exhibited accelerated disease onset. These findings suggest that ECs are PR:PROJECT_SUMMARY important regulators of brain homeostasis, and their dysfunction may contribute PR:PROJECT_SUMMARY to the pathogenesis of neurodegenerative diseases. PR:INSTITUTE University of Calgary PR:DEPARTMENT Veterinary Medicine PR:LABORATORY Biernaskie Lab PR:LAST_NAME Colter PR:FIRST_NAME James PR:ADDRESS 2500 University Drive NW PR:EMAIL jdcolter@ucalgary.ca PR:PHONE +1 (403) 210-7306 PR:FUNDING_SOURCE CIHR PR:PROJECT_COMMENTS Part 2 of 3 PR:PUBLICATIONS (Under Review) PR:CONTRIBUTORS Nilesh Sharma, Alexander Pun, James Colter, Leslie Cao, Nicole Rosin, Dominic PR:CONTRIBUTORS Gerding, Isabel Rea, Apolline Pistek, Qandeel Shafqat, Sarthak Sinha, Elodie PR:CONTRIBUTORS Labit, Eren Kutluberk, Caleb Small, Reese Landes, Tak Ho Chu, Kartikeya Murari, PR:CONTRIBUTORS E. Dale Abel, Jeffrey T. Joseph, Rehana Leak, Jeff Dunn, and Jeff Biernaskie #STUDY ST:STUDY_TITLE Metabolic perturbation in ependymal cells leads to local and distant ST:STUDY_TITLE neurodegeneration and cognitive decline - Study 2 of 3 (12-month Glut1KO against ST:STUDY_TITLE Ctrl) ST:STUDY_SUMMARY Ependymal cells (ECs) are specialized multi-ciliated glial cells that line the ST:STUDY_SUMMARY ventricular system of the brain, regulating cerebrospinal fluid flow (CSF) and ST:STUDY_SUMMARY the neighbouring neural stem cell (NSC) niche. However, their role in ST:STUDY_SUMMARY maintaining brain homeostasis or in disease pathogenesis remains unclear. To ST:STUDY_SUMMARY elucidate their function, we disrupted ependymal glucose metabolism by ST:STUDY_SUMMARY genetically deleting glucose-transporter-1 (GLUT1/Slc2a1) in postnatal ECs. ST:STUDY_SUMMARY Analyses were carried out across three separate studies (batches), with one ST:STUDY_SUMMARY study at 1 month (6 mice) and two studies at 12 months (3 mice, 5 mice). Results ST:STUDY_SUMMARY from this project confirm CSF flow changes and disrupted NSC differentiation and ST:STUDY_SUMMARY neuroblast migration. These mice also exhibited periventricular lipid droplet ST:STUDY_SUMMARY accumulation similar to Alzheimer’s disease brains. Aged cKO mice exhibited ST:STUDY_SUMMARY progressive cognitive and motor dysfunction, and onset of seizure activity. ST:STUDY_SUMMARY These behavioral deficits were coincident with various neurodegenerative ST:STUDY_SUMMARY pathologies, including dysmyelination, microglia-associated inflammation, and ST:STUDY_SUMMARY lipid imbalance. When combined with metabolic perturbation in ECs, 5xFAD mice ST:STUDY_SUMMARY exhibited accelerated disease onset. These findings suggest that ECs are ST:STUDY_SUMMARY important regulators of brain homeostasis, and their dysfunction may contribute ST:STUDY_SUMMARY to the pathogenesis of neurodegenerative diseases. In this part, 5x mice were ST:STUDY_SUMMARY analyzed at 12-months under Glut1ko (2 mice) or Control (3 mice) conditions. ST:STUDY_SUMMARY This study was conducted to append the number of replicates from study 1 at 12 ST:STUDY_SUMMARY months. ST:INSTITUTE University of Calgary ST:DEPARTMENT Veterinary Medicine ST:LABORATORY Biernaskie Lab ST:LAST_NAME Colter ST:FIRST_NAME James ST:ADDRESS 2500 University Drive NW, Calgary AB Canada, T2N1N4 ST:EMAIL jdcolter@ucalgary.ca ST:PHONE +1 (403) 210-7306 ST:NUM_GROUPS 4 ST:TOTAL_SUBJECTS 13 ST:STUDY_COMMENTS Part 2 of 3 ST:PUBLICATIONS (under review) #SUBJECT SU:SUBJECT_TYPE Mammal SU:SUBJECT_SPECIES Mus musculus SU:TAXONOMY_ID 10090 SU:AGE_OR_AGE_RANGE 12 months #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data SUBJECT_SAMPLE_FACTORS - 162 Sample source:220927_secondset | Condition:Control | Sample source:Brain Age (Months)=12; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_1.mcf; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_2.mcf SUBJECT_SAMPLE_FACTORS - 163 Sample source:220927_secondset | Condition:Control | Sample source:Brain Age (Months)=12; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_1.mcf; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_2.mcf SUBJECT_SAMPLE_FACTORS - 164 Sample source:220927_secondset | Condition:Control | Sample source:Brain Age (Months)=12; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_1.mcf; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_2.mcf SUBJECT_SAMPLE_FACTORS - 272 Sample source:220927_secondset | Condition:Knockout | Sample source:Brain Age (Months)=12; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_1.mcf; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_2.mcf SUBJECT_SAMPLE_FACTORS - 292 Sample source:220927_secondset | Condition:Knockout | Sample source:Brain Age (Months)=12; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_1.mcf; RAW_FILE_NAME(Raw Data Files)=db6e73b8-30b0-43ba-a65e-af2f7c105d78_2.mcf #COLLECTION CO:COLLECTION_SUMMARY The brain was collected as mentioned below. After the mice were euthanized, it CO:COLLECTION_SUMMARY was transcardially perfused with PBS. The brain is dissected out and then flash CO:COLLECTION_SUMMARY frozen in liquid nitrogen. The flash frozen brain tissue was then sectioned at CO:COLLECTION_SUMMARY 12 μm thickness on a cryostat (Leica Biosystems). CO:SAMPLE_TYPE Brain #TREATMENT TR:TREATMENT_SUMMARY The brain was collected as mentioned above with minor modifications. After the TR:TREATMENT_SUMMARY mice were euthanized, it was transcardially perfused with PBS. The brain is TR:TREATMENT_SUMMARY dissected out and then flash frozen in liquid nitrogen. The flash frozen brain TR:TREATMENT_SUMMARY tissue was then sectioned at 12 μm thickness on a cryostat (Leica Biosystems). TR:TREATMENT_SUMMARY MALDI matrix (9-aminoacridine, 9AA) (Sigma-Aldrich) was spray-coated onto the TR:TREATMENT_SUMMARY target slides in an automated fashion using a TM Sprayer (HTX Imaging). 9-AA was TR:TREATMENT_SUMMARY made up as a 5 mg/ml solution in 90% methanol. Four passes were used with a TR:TREATMENT_SUMMARY nozzle temperature of 85°, a flowrate of 0.15 ml/min, 2-mm track spacing, and a TR:TREATMENT_SUMMARY stage velocity of 700 mm/min. Nitrogen was used as the nebulization gas and was TR:TREATMENT_SUMMARY set to 10 psi. Images were acquired on a 15T Fourier transform ion cyclotron TR:TREATMENT_SUMMARY resonance mass spectrometer (FT-ICR MS, Solarix, Bruker Daltonics) equipped with TR:TREATMENT_SUMMARY an Apollo II dual ion source and Smartbeam II 2kHz Nd:YAG laser that was TR:TREATMENT_SUMMARY frequency tripled to 355 nm. Data were collected in the negative ion mode with TR:TREATMENT_SUMMARY the laser operating at 2 kHz at 50 μm resolution. Tentative metabolite TR:TREATMENT_SUMMARY identifications were made by accurate mass, typically better than 1 ppm. Images TR:TREATMENT_SUMMARY were analyzed with flexImaging software (Bruker), while average spectra were TR:TREATMENT_SUMMARY exported to mMass for visualization of differences. #SAMPLEPREP SP:SAMPLEPREP_SUMMARY MALDI matrix (9-aminoacridine, 9AA) (Sigma-Aldrich) was spray-coated onto the SP:SAMPLEPREP_SUMMARY target slides in an automated fashion using a TM Sprayer (HTX Imaging). 9-AA was SP:SAMPLEPREP_SUMMARY made up as a 5 mg/ml solution in 90% methanol. Four passes were used with a SP:SAMPLEPREP_SUMMARY nozzle temperature of 85°, a flowrate of 0.15 ml/min, 2-mm track spacing, and a SP:SAMPLEPREP_SUMMARY stage velocity of 700 mm/min. Nitrogen was used as the nebulization gas and was SP:SAMPLEPREP_SUMMARY set to 10 psi. Images were acquired on a 15T Fourier transform ion cyclotron SP:SAMPLEPREP_SUMMARY resonance mass spectrometer (FT-ICR MS, Solarix, Bruker Daltonics) equipped with SP:SAMPLEPREP_SUMMARY an Apollo II dual ion source and Smartbeam II 2kHz Nd:YAG laser that was SP:SAMPLEPREP_SUMMARY frequency tripled to 355 nm. Data were collected in the negative ion mode with SP:SAMPLEPREP_SUMMARY the laser operating at 2 kHz at 50 μm resolution. Tentative metabolite SP:SAMPLEPREP_SUMMARY identifications were made by accurate mass, typically better than 1 ppm. Images SP:SAMPLEPREP_SUMMARY were analyzed with flexImaging software (Bruker), while average spectra were SP:SAMPLEPREP_SUMMARY exported to mMass for visualization of differences. #CHROMATOGRAPHY CH:CHROMATOGRAPHY_TYPE None (Direct infusion) CH:INSTRUMENT_NAME none CH:COLUMN_NAME none CH:SOLVENT_A none CH:SOLVENT_B none CH:FLOW_GRADIENT none CH:FLOW_RATE none CH:COLUMN_TEMPERATURE none #ANALYSIS AN:ANALYSIS_TYPE MS #MS MS:INSTRUMENT_NAME Bruker Solarix FT-ICR-MS MS:INSTRUMENT_TYPE MALDI-TOF MS:MS_TYPE MALDI MS:ION_MODE NEGATIVE MS:MS_COMMENTS Methods below. Please note that the processed data files included in this MS:MS_COMMENTS submission only provide the identified metabolites in the set, since the data MS:MS_COMMENTS format for workbench does not allow a 3-dimensional approach (each pixel MS:MS_COMMENTS contains a spectrum, and sample brains within an experiment are sectioned by MS:MS_COMMENTS brain region and analyzed by metabolite across spatial coordinates). Please MS:MS_COMMENTS refer to github.com/BiernaskieLab for .csv files containing spectral intensities MS:MS_COMMENTS by metabolite across spatial coordinates for specific brain regions by sample. MS:MS_COMMENTS MALDI-TOF spectral data was acquired using Bruker Compass FlexImaging software. MS:MS_COMMENTS The raw dataset was exported to Bruker SciLS Lab for peak-finding, isolation of MS:MS_COMMENTS spectral data by region. Reorganized data was exported as .csv files for MS:MS_COMMENTS cross-dataset comparisons utilizing Python. Total ion count (TIC) normalization MS:MS_COMMENTS was applied prior to exporting numerical intensity data from SciLS Lab or MS:MS_COMMENTS plotting and exporting images from FlexImaging. Automated peak-finding was MS:MS_COMMENTS applied within Bruker SciLS Lab to TIC-normalized datasets to generate an ion MS:MS_COMMENTS list for further processing. This ion list was cross-referenced between datasets MS:MS_COMMENTS to harmonize the ion list across brain sections imaged in all experiments. The MS:MS_COMMENTS COMP_DB database at https://www.lipidmaps.org was applied to annotate ions with MS:MS_COMMENTS potential lipid hits. A delta m/z of ±0.01 was used. If no matches were MS:MS_COMMENTS returned, this delta was increased to ±0.02, and repeated at ±0.05 if nothing MS:MS_COMMENTS was returned. Ions that had no matches in the database beyond ±0.05 were MS:MS_COMMENTS excluded from the set. Given the limitations of assessing fragmentation profiles MS:MS_COMMENTS of the mass spectral data, ions with potential matches from multiple lipid MS:MS_COMMENTS groups were classified as ‘unknown’. Those ions with multiple possible MS:MS_COMMENTS matches from the same group were included in their respective lipid group and MS:MS_COMMENTS annotated with all possible matches. This resulted in a list of 48 ions with MS:MS_COMMENTS known lipid groups. #MS_METABOLITE_DATA MS_METABOLITE_DATA:UNITS n/a MS_METABOLITE_DATA_START Samples 162 163 164 272 292 Factors Sample source:220927_secondset | Condition:Control | Sample source:Brain Sample source:220927_secondset | Condition:Control | Sample source:Brain Sample source:220927_secondset | Condition:Control | Sample source:Brain Sample source:220927_secondset | Condition:Knockout | Sample source:Brain Sample source:220927_secondset | Condition:Knockout | Sample source:Brain CAR 13:0;O4 1 1 1 1 1 FA 15:4;O2 1 1 1 1 1 FA 13:2;O2, MG 10:2 1 1 1 1 1 FA 18:1 1 1 1 1 1 NAE 15:1, SPB 17:2;O2 1 1 1 1 1 ST 21:5;O8;GlcA 1 1 1 1 1 FA 13:2;O3, MG 10:2;O 1 1 1 1 1 ST 19:5;O3 1 1 1 1 1 NAE 13:3;O3 1 1 1 1 1 FA 20:4, ST 20:1;O2 1 1 1 1 1 NAE 17:4 1 1 1 1 1 FA 14:3;O3, MG 11:3;O 1 1 1 1 1 CoA 10:0 1 1 1 1 1 ST 20:5;O3 1 1 1 1 1 NAE 15:4 1 1 1 1 1 FA 16:3;O4 1 1 1 1 1 FA 15:3;O3, MG 12:3;O, LPA O-11:3 1 1 1 1 1 ACer 64:4;O2 1 1 1 1 1 ST 21:6;O3 1 1 1 1 1 ST 21:5;O3 1 1 1 1 1 CAR 10:2;O, NAE 15:3;O3 1 1 1 1 1 FA 17:3;O4 1 1 1 1 1 ST 21:4;O3 1 1 1 1 1 FA 22:6, ST 22:3;O2 1 1 1 1 1 CAR 11:0, NAE 16:1;O2, SPB 18:2;O4, NAE 15:1, SPB 17:2;O2 1 1 1 1 1 FA 22:4, ST 22:1;O2 1 1 1 1 1 ACer 65:0;O4 1 1 1 1 1 ST 22:5;O3 1 1 1 1 1 LPG 31:6, LPG O-31:7;O, PA 34:5;O, PEth 32:5;O, PG O-31:6 1 1 1 1 1 FA 18:3;O4, ST 18:0;O6 1 1 1 1 1 TG 37:8;O3 1 1 1 1 1 PC 56:0;O, PE 59:0;O, PS O-58:0, PT O-57:0 1 1 1 1 1 NAT 16:0 1 1 1 1 1 PIP 22:4 1 1 1 1 1 HexCer 36:6;O4 1 1 1 1 1 FA 20:2;O2, MG 17:2, MG O-17:3;O 1 1 1 1 1 NAT 16:1;O 1 1 1 1 1 Hex2Cer 50:1;O5 1 1 1 1 1 BMP 34:5;O, LPI O-31:6, PG 34:5;O, FA 17:1;O4, FA 16:1;O4 1 1 1 1 1 SPBP 15:3;O3, M(IP)2C 28:5;O6 1 1 1 1 1 PC 63:5, PC O-63:6;O, PE 66:5, PE O-66:6;O 1 1 1 1 1 TG O-72:0;O2 1 1 1 1 1 NAT 11:0;O3 1 1 1 1 1 NAT 18:1 1 1 1 1 1 NAT 16:2;O2 1 1 1 1 1 NAT 18:0 1 1 1 1 1 LPA O-16:2 1 1 1 1 1 NAT 16:1;O2 1 1 1 1 1 SQDG 33:2, FA 22:3;O2, MG 19:3, MG O-19:4;O, ST 22:0;O4 1 1 1 1 1 DGCC 68:10 1 1 1 1 1 FA 22:2;O2, MG 19:2, MG O-19:3;O, SQDG 33:0 1 1 1 1 1 NAT 20:4 1 1 1 1 1 LPA O-18:3, FA 22:3;O3, MG 19:3;O, ST 22:0;O5 1 1 1 1 1 DG 22:5, DG O-22:6;O, FA 25:6;O3, ST 25:3;O5 1 1 1 1 1 CAR 13:1;O4 1 1 1 1 1 LPA O-18:2, FA 22:2;O3, MG 19:2;O 1 1 1 1 1 CAR 13:0;O4, CAR 12:0;O2, NAE 17:1;O4, CAR 11:0;O2, NAE 16:1;O4 1 1 1 1 1 TG 81:10;O2, TG O-81:11;O3 1 1 1 1 1 PG 43:12;O 1 1 1 1 1 NAT 22:6 1 1 1 1 1 FA 23:6;O3, ST 23:3;O5, FA 22:6;O3, ST 22:3;O5, DG 20:5 1 1 1 1 1 LPA 18:1, LPA O-18:2;O 1 1 1 1 1 FA 22:1;O4, LPA 18:0, LPA O-18:1;O 1 1 1 1 1 NAT 22:4 1 1 1 1 1 DG 21:5, DG O-21:6;O, FA 24:6;O3, MG 21:6;O, ST 24:3;O5 1 1 1 1 1 PG 44:5, PG O-44:6;O 1 1 1 1 1 SHexCer 37:0;O6 1 1 1 1 1 PIP 65:10 1 1 1 1 1 CAR 17:2, NAE 22:3;O2 1 1 1 1 1 PA 49:6;O, PEth 47:6;O, PG O-46:7 1 1 1 1 1 PA 49:5;O, PEth 47:5;O, PG O-46:6 1 1 1 1 1 TG 87:19;O2, TG O-87:20;O3 1 1 1 1 1 PG 46:5, DG 56:14;O2, TG 56:13;O, TG O-56:14;O2 1 1 1 1 1 LPC O-15:2, LPE O-18:2 1 1 1 1 1 ST 26:5;O5 1 1 1 1 1 LPC O-15:1, LPE O-18:1, CAR 17:0;O, NAE 22:1;O3 1 1 1 1 1 ST 27:1;O;S 1 1 1 1 1 LPC 15:0, LPC O-15:1;O, LPE 18:0, LPE O-18:1;O, CAR 17:0;O2, NAE 22:1;O4 1 1 1 1 1 PI O-46:3 1 1 1 1 1 PIP3 68:1;O 1 1 1 1 1 PIP3 33:2;O 1 1 1 1 1 ACer 73:0;O4 1 1 1 1 1 LPA 34:2;O, LPG O-31:3, PA 34:1, PA O-34:2;O 1 1 1 1 1 LPG O-33:4, PA 36:2, PA O-36:3;O, LPA O-34:4 1 1 1 1 1 HexCer 32:2;O4, CAR 29:2;O4, DGCC 26:1, HexCer 30:2;O2 1 1 1 1 1 LPG O-33:3, PA 36:1, PA O-36:2;O, PEth 34:1, LPA O-34:3 1 1 1 1 1 HexCer 32:1;O4, CAR 29:1;O4, DGCC 26:0, HexCer 30:1;O2 1 1 1 1 1 PA 38:4, DG 39:5;O2, TG 39:4;O 1 1 1 1 1 CerP 41:3;O3, LPC 33:3, LPC O-33:4;O, PE O-36:3 1 1 1 1 1 CerP 41:2;O4, LPC 33:2;O, PE 36:1 1 1 1 1 1 PA 40:7, PA O-40:8;O, PEth 38:7, DG 41:8;O2, TG 41:7;O, TG O-41:8;O2 1 1 1 1 1 DG O-45:12 1 1 1 1 1 CerPE 37:3;O3, SM 34:3;O3 1 1 1 1 1 PA 40:4, TG 41:4;O, DG 41:5;O2 1 1 1 1 1 PE 38:6, PE O-38:7;O, DGTA 34:6, PC 36:6 1 1 1 1 1 CerP 42:4;O6, PS 36:2, PT 35:2, LPC 33:4;O, PE 36:3, PE O-35:4;O 1 1 1 1 1 PE 40:7, PE O-40:8;O 1 1 1 1 1 CerP 42:3;O6, PS 36:1, PT 35:1, LPC 33:3;O 1 1 1 1 1 PA 43:6, MGDG 37:5, TG 41:5;O2 1 1 1 1 1 SHexCer 36:1;O2 1 1 1 1 1 PS 40:6, PT 39:6, PC O-37:8;O, PE 40:7 1 1 1 1 1 LPI 34:2;O, PG 35:2;O 1 1 1 1 1 PC O-39:8, PE O-42:8 1 1 1 1 1 SHexCer 38:1;O3 1 1 1 1 1 IPC 36:2;O3 1 1 1 1 1 PI 36:4, PG 38:5;O 1 1 1 1 1 PC O-41:11, PE O-44:11 1 1 1 1 1 SHexCer 40:2;O2 1 1 1 1 1 PA 47:6;O, PEth 45:6;O, PG O-44:7 1 1 1 1 1 CerP 47:3;O4, PC 39:2, PE 42:2 1 1 1 1 1 CerPE 42:2;O5, SM 39:2;O5 1 1 1 1 1 SHexCer 41:2;O2 1 1 1 1 1 CerPE 43:3;O5, SM 40:3;O5 1 1 1 1 1 CerP 47:4;O5, PC 39:3;O, PE 42:3;O 1 1 1 1 1 SHexCer 41:1;O2 1 1 1 1 1 CerPE 42:3;O6, SM 39:3;O6 1 1 1 1 1 CerPE 43:2;O5, SM 40:2;O5 1 1 1 1 1 HexCer 43:6;O6 1 1 1 1 1 PG 44:5, PI 37:0 1 1 1 1 1 HexCer 44:6;O3, PS 43:4, PT 42:4, PC 40:5, PE 43:5 1 1 1 1 1 PI 38:6, PI O-38:7;O 1 1 1 1 1 PI 38:5, PI O-38:6;O 1 1 1 1 1 PA 49:9;O, PG O-46:10, TG 50:9;O2 1 1 1 1 1 PC O-43:12, PE O-46:12, Hex2Cer 34:5;O4 1 1 1 1 1 SHexCer 42:4;O2 1 1 1 1 1 PI 38:4, PG 40:5;O 1 1 1 1 1 PC O-43:11, PE O-46:11, Hex2Cer 34:4;O4 1 1 1 1 1 SHexCer 42:3;O2 1 1 1 1 1 PG 42:5, PG O-42:6;O 1 1 1 1 1 PE 47:6, PC 45:6 1 1 1 1 1 SHexCer 41:2;O3 1 1 1 1 1 PE 46:6;O, PS O-45:6, PT O-44:6 1 1 1 1 1 SHexCer 42:1;O2 1 1 1 1 1 DGDG 32:0, PG 45:6, PG O-45:7;O 1 1 1 1 1 TG 53:10, PA O-52:11 1 1 1 1 1 CerP 48:3;O5, PC 40:2;O, PE 43:2;O, PS O-42:2, PT O-41:2 1 1 1 1 1 CerP 51:6;O5, PE 46:5;O, PS O-45:5, PT O-44:5 1 1 1 1 1 CerPE 43:2;O6, SM 40:2;O6 1 1 1 1 1 CerP 50:4;O4, PC 42:3, PC O-42:4;O, PE 45:3 1 1 1 1 1 CerPE 45:3;O5, SM 42:3;O5 1 1 1 1 1 PS 45:6, PT 44:6, PC 42:7 1 1 1 1 1 PC 41:3;O, PE 44:3;O, PS O-43:3, PT O-42:3 1 1 1 1 1 CerPE 44:3;O6, SM 41:3;O6 1 1 1 1 1 PS 45:5, PT 44:5, PC 42:6, PE 44:6 1 1 1 1 1 CerP 49:3;O5, PC 41:2;O, PE 44:2;O, PS O-43:2, PT O-42:2 1 1 1 1 1 CerPE 44:2;O6, SM 41:2;O6 1 1 1 1 1 CerP 51:6;O6, PS 45:4, PT 44:4, HexCer 46:6;O3 1 1 1 1 1 PI 40:6, PG 42:7;O 1 1 1 1 1 CerP 50:4;O5, PC 42:3;O, PE 45:3;O, PS O-44:3, PT O-43:3 1 1 1 1 1 MS_METABOLITE_DATA_END #METABOLITES METABOLITES_START metabolite_name mz CAR 13:0;O4 209.62846 FA 15:4;O2 265.1477 FA 13:2;O2, MG 10:2 277.12273 FA 18:1 281.24853 NAE 15:1, SPB 17:2;O2 282.25188 ST 21:5;O8;GlcA 290.08808 FA 13:2;O3, MG 10:2;O 293.11749 ST 19:5;O3 297.15312 NAE 13:3;O3 298.1566 FA 20:4, ST 20:1;O2 303.23279 NAE 17:4 304.23632 FA 14:3;O3, MG 11:3;O 305.11756 CoA 10:0 306.07651 ST 20:5;O3 311.16875 NAE 15:4 312.17223 FA 16:3;O4 313.16484 FA 15:3;O3, MG 12:3;O, LPA O-11:3 319.1333 ACer 64:4;O2 320.97807 ST 21:6;O3 323.16918 ST 21:5;O3 325.18454 CAR 10:2;O, NAE 15:3;O3 326.18809 FA 17:3;O4 327.18062 ST 21:4;O3 327.19146 FA 22:6, ST 22:3;O2 327.23282 CAR 11:0, NAE 16:1;O2, SPB 18:2;O4, NAE 15:1, SPB 17:2;O2 328.23619 FA 22:4, ST 22:1;O2 331.26414 ACer 65:0;O4 338.98861 ST 22:5;O3 339.20043 LPG 31:6, LPG O-31:7;O, PA 34:5;O, PEth 32:5;O, PG O-31:6 340.20384 FA 18:3;O4, ST 18:0;O6 341.19635 TG 37:8;O3 341.20705 PC 56:0;O, PE 59:0;O, PS O-58:0, PT O-57:0 360.97077 NAT 16:0 362.23704 PIP 22:4 370.13489 HexCer 36:6;O4 373.74897 FA 20:2;O2, MG 17:2, MG O-17:3;O 375.23062 NAT 16:1;O 376.21691 Hex2Cer 50:1;O5 376.94451 BMP 34:5;O, LPI O-31:6, PG 34:5;O, FA 17:1;O4, FA 16:1;O4 377.22017 SPBP 15:3;O3, M(IP)2C 28:5;O6 384.13796 PC 63:5, PC O-63:6;O, PE 66:5, PE O-66:6;O 384.98413 TG O-72:0;O2 386.0334 NAT 11:0;O3 386.14927 NAT 18:1 388.25246 NAT 16:2;O2 390.19652 NAT 18:0 390.26831 LPA O-16:2 391.22549 NAT 16:1;O2 392.21179 SQDG 33:2, FA 22:3;O2, MG 19:3, MG O-19:4;O, ST 22:0;O4 401.24599 DGCC 68:10 402.99488 FA 22:2;O2, MG 19:2, MG O-19:3;O, SQDG 33:0 403.26173 NAT 20:4 410.23694 LPA O-18:3, FA 22:3;O3, MG 19:3;O, ST 22:0;O5 417.241 DG 22:5, DG O-22:6;O, FA 25:6;O3, ST 25:3;O5 417.26542 CAR 13:1;O4 418.24431 LPA O-18:2, FA 22:2;O3, MG 19:2;O 419.2565 CAR 13:0;O4, CAR 12:0;O2, NAE 17:1;O4, CAR 11:0;O2, NAE 16:1;O4 420.2602 TG 81:10;O2, TG O-81:11;O3 426.02217 PG 43:12;O 433.23843 NAT 22:6 434.23697 FA 23:6;O3, ST 23:3;O5, FA 22:6;O3, ST 22:3;O5, DG 20:5 435.24057 LPA 18:1, LPA O-18:2;O 435.25146 FA 22:1;O4, LPA 18:0, LPA O-18:1;O 437.26746 NAT 22:4 438.27099 DG 21:5, DG O-21:6;O, FA 24:6;O3, MG 21:6;O, ST 24:3;O5 439.22545 PG 44:5, PG O-44:6;O 439.30266 SHexCer 37:0;O6 442.77617 PIP 65:10 443.27765 CAR 17:2, NAE 22:3;O2 444.28856 PA 49:6;O, PEth 47:6;O, PG O-46:7 444.31307 PA 49:5;O, PEth 47:5;O, PG O-46:6 445.32051 TG 87:19;O2, TG O-87:20;O3 448.00409 PG 46:5, DG 56:14;O2, TG 56:13;O, TG O-56:14;O2 453.31867 LPC O-15:2, LPE O-18:2 462.2989 ST 26:5;O5 463.22576 LPC O-15:1, LPE O-18:1, CAR 17:0;O, NAE 22:1;O3 464.31495 ST 27:1;O;S 465.30468 LPC 15:0, LPC O-15:1;O, LPE 18:0, LPE O-18:1;O, CAR 17:0;O2, NAE 22:1;O4 480.3095 PI O-46:3 492.35187 PIP3 68:1;O 521.98387 PIP3 33:2;O 537.19357 ACer 73:0;O4 558.06487 LPA 34:2;O, LPG O-31:3, PA 34:1, PA O-34:2;O 673.48132 LPG O-33:4, PA 36:2, PA O-36:3;O, LPA O-34:4 699.49707 HexCer 32:2;O4, CAR 29:2;O4, DGCC 26:1, HexCer 30:2;O2 700.49999 LPG O-33:3, PA 36:1, PA O-36:2;O, PEth 34:1, LPA O-34:3 701.51257 HexCer 32:1;O4, CAR 29:1;O4, DGCC 26:0, HexCer 30:1;O2 702.5156 PA 38:4, DG 39:5;O2, TG 39:4;O 723.49706 CerP 41:3;O3, LPC 33:3, LPC O-33:4;O, PE O-36:3 726.54461 CerP 41:2;O4, LPC 33:2;O, PE 36:1 744.55471 PA 40:7, PA O-40:8;O, PEth 38:7, DG 41:8;O2, TG 41:7;O, TG O-41:8;O2 745.48143 DG O-45:12 747.51525 CerPE 37:3;O3, SM 34:3;O3 749.50335 PA 40:4, TG 41:4;O, DG 41:5;O2 751.52803 PE 38:6, PE O-38:7;O, DGTA 34:6, PC 36:6 762.50841 CerP 42:4;O6, PS 36:2, PT 35:2, LPC 33:4;O, PE 36:3, PE O-35:4;O 786.52916 PE 40:7, PE O-40:8;O 788.52311 CerP 42:3;O6, PS 36:1, PT 35:1, LPC 33:3;O 788.54456 PA 43:6, MGDG 37:5, TG 41:5;O2 789.54826 SHexCer 36:1;O2 806.54511 PS 40:6, PT 39:6, PC O-37:8;O, PE 40:7 834.5284 LPI 34:2;O, PG 35:2;O 835.53222 PC O-39:8, PE O-42:8 836.53525 SHexCer 38:1;O3 850.57178 IPC 36:2;O3 856.51113 PI 36:4, PG 38:5;O 857.51952 PC O-41:11, PE O-44:11 858.52182 SHexCer 40:2;O2 860.59306 PA 47:6;O, PEth 45:6;O, PG O-44:7 861.59573 CerP 47:3;O4, PC 39:2, PE 42:2 862.60929 CerPE 42:2;O5, SM 39:2;O5 863.61152 SHexCer 41:2;O2 874.60875 CerPE 43:3;O5, SM 40:3;O5 875.61262 CerP 47:4;O5, PC 39:3;O, PE 42:3;O 876.58876 SHexCer 41:1;O2 876.62411 CerPE 42:3;O6, SM 39:3;O6 877.59187 CerPE 43:2;O5, SM 40:2;O5 877.6273 HexCer 43:6;O6 878.60439 PG 44:5, PI 37:0 879.60678 HexCer 44:6;O3, PS 43:4, PT 42:4, PC 40:5, PE 43:5 880.60969 PI 38:6, PI O-38:7;O 881.52016 PI 38:5, PI O-38:6;O 883.53521 PA 49:9;O, PG O-46:10, TG 50:9;O2 883.58548 PC O-43:12, PE O-46:12, Hex2Cer 34:5;O4 884.5381 SHexCer 42:4;O2 884.59029 PI 38:4, PG 40:5;O 885.55048 PC O-43:11, PE O-46:11, Hex2Cer 34:4;O4 886.55434 SHexCer 42:3;O2 886.60857 PG 42:5, PG O-42:6;O 887.55686 PE 47:6, PC 45:6 888.6488 SHexCer 41:2;O3 890.60358 PE 46:6;O, PS O-45:6, PT O-44:6 890.62912 SHexCer 42:1;O2 890.64189 DGDG 32:0, PG 45:6, PG O-45:7;O 891.60796 TG 53:10, PA O-52:11 891.62625 CerP 48:3;O5, PC 40:2;O, PE 43:2;O, PS O-42:2, PT O-41:2 892.62011 CerP 51:6;O5, PE 46:5;O, PS O-45:5, PT O-44:5 892.64577 CerPE 43:2;O6, SM 40:2;O6 893.62354 CerP 50:4;O4, PC 42:3, PC O-42:4;O, PE 45:3 902.64079 CerPE 45:3;O5, SM 42:3;O5 903.64435 PS 45:6, PT 44:6, PC 42:7 904.60498 PC 41:3;O, PE 44:3;O, PS O-43:3, PT O-42:3 904.62003 CerPE 44:3;O6, SM 41:3;O6 905.62423 PS 45:5, PT 44:5, PC 42:6, PE 44:6 906.62121 CerP 49:3;O5, PC 41:2;O, PE 44:2;O, PS O-43:2, PT O-42:2 906.63634 CerPE 44:2;O6, SM 41:2;O6 907.63934 CerP 51:6;O6, PS 45:4, PT 44:4, HexCer 46:6;O3 908.64266 PI 40:6, PG 42:7;O 909.55116 CerP 50:4;O5, PC 42:3;O, PE 45:3;O, PS O-44:3, PT O-43:3 918.6362 METABOLITES_END #END