#METABOLOMICS WORKBENCH hexiao0507_20250809_215353 DATATRACK_ID:6264 STUDY_ID:ST004122 ANALYSIS_ID:AN006835 PROJECT_ID:PR002591 VERSION 1 CREATED_ON August 20, 2025, 8:25 am #PROJECT PR:PROJECT_TITLE Metabolomic responses of Artemisia argyi to synthetic microbial community PR:PROJECT_TITLE inoculation under cadmium stress PR:PROJECT_TYPE Environmental metabolomics PR:PROJECT_SUMMARY This project aims to investigate the metabolic responses of Artemisia argyi to PR:PROJECT_SUMMARY inoculation with a native synthetic microbial community (SynCom) in PR:PROJECT_SUMMARY cadmium-contaminated soils. We will perform untargeted rhizosphere metabolomics PR:PROJECT_SUMMARY and targeted leaf volatile metabolomics to assess how SynCom inoculation PR:PROJECT_SUMMARY influences primary and secondary metabolic pathways under heavy metal stress. PR:PROJECT_SUMMARY The study will focus on identifying key metabolites and metabolic pathways PR:PROJECT_SUMMARY related to microbial carbon fixation, soil organic carbon accumulation, stress PR:PROJECT_SUMMARY signaling, and essential oil biosynthesis. The findings are expected to provide PR:PROJECT_SUMMARY insights into the mechanisms by which SynCom enhances phytoremediation PR:PROJECT_SUMMARY efficiency, carbon sequestration, and the economic utilization potential of A. PR:PROJECT_SUMMARY argyi in mining-impacted environments. PR:INSTITUTE Central South University, China PR:DEPARTMENT School of Metallurgy and Environment PR:LAST_NAME He PR:FIRST_NAME Xiao PR:ADDRESS No. 932 Lushan South Road, Changsha 410083, P.R. China PR:EMAIL hexiao0507@gmail.com PR:PHONE +86 13805204537 PR:CONTRIBUTORS Rui Xu #STUDY ST:STUDY_TITLE Untargeted rhizosphere metabolomics of Artemisia argyi under cadmium stress with ST:STUDY_TITLE synthetic microbial community inoculation ST:STUDY_TYPE LC-MS ST:STUDY_SUMMARY This study investigated rhizosphere metabolic responses of Artemisia argyi to ST:STUDY_SUMMARY inoculation with a native two-member synthetic microbial community (SynCom) in ST:STUDY_SUMMARY cadmium-contaminated soils. Pot experiments were conducted using soils from a ST:STUDY_SUMMARY historically polluted mining area in Hunan Province, China, with ST:STUDY_SUMMARY SynCom-inoculated and uninoculated plants grown for 60 days under 400 mg/kg Cd ST:STUDY_SUMMARY stress. Rhizosphere soil metabolites were extracted with methanol containing an ST:STUDY_SUMMARY internal standard and analyzed by UHPLC-Q Exactive MS in positive and negative ST:STUDY_SUMMARY ionization modes. Untargeted metabolomics revealed 39% fatty acyls, 14% ST:STUDY_SUMMARY organooxygen compounds, and 11% carboxylic acids and derivatives as dominant ST:STUDY_SUMMARY classes. SynCom inoculation significantly upregulated key intermediates in ST:STUDY_SUMMARY microbial respiration and carbon metabolism (e.g., 6-phosphogluconic acid, ST:STUDY_SUMMARY succinic acid, fumaric acid) and biomarkers of microbial biomass and ST:STUDY_SUMMARY root-derived carbon input (lanosterin, β-sitosterol). Enrichment of signaling ST:STUDY_SUMMARY molecules such as nobiletin suggested enhanced antioxidative capacity and ST:STUDY_SUMMARY potential chemoattraction of beneficial microbes including Pseudomonas, ST:STUDY_SUMMARY Rahnella, and functional partners. These results indicate that SynCom ST:STUDY_SUMMARY inoculation reshapes rhizosphere metabolic networks to promote carbon retention ST:STUDY_SUMMARY and microbial resilience under heavy metal stress. ST:INSTITUTE Central South University, China ST:DEPARTMENT School of Metallurgy and Environment ST:LAST_NAME He ST:FIRST_NAME Xiao ST:ADDRESS 932 South Lushan Road ST:EMAIL hexiao0507@gmail.com ST:PHONE +86 13805204537 #SUBJECT SU:SUBJECT_TYPE Plant SU:SUBJECT_SPECIES Artemisia argyi SU:TAXONOMY_ID 259893 SU:GENOTYPE_STRAIN NA SU:AGE_OR_AGE_RANGE 60 days SU:GENDER Not applicable #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data SUBJECT_SAMPLE_FACTORS - N_1_neg Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Negative RAW_FILE_NAME(Raw file name)=N_1_neg.mzML SUBJECT_SAMPLE_FACTORS - N_1_pos Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Positive RAW_FILE_NAME(Raw file name)=N_1_pos.mzML SUBJECT_SAMPLE_FACTORS - N_2_neg Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Negative RAW_FILE_NAME(Raw file name)=N_2_neg.mzML SUBJECT_SAMPLE_FACTORS - N_2_pos Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Positive RAW_FILE_NAME(Raw file name)=N_2_pos.mzML SUBJECT_SAMPLE_FACTORS - N_3_neg Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Negative RAW_FILE_NAME(Raw file name)=N_3_neg.mzML SUBJECT_SAMPLE_FACTORS - N_3_pos Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Positive RAW_FILE_NAME(Raw file name)=N_3_pos.mzML SUBJECT_SAMPLE_FACTORS - Syn_1_neg Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Negative RAW_FILE_NAME(Raw file name)=Syn_1_neg.mzML SUBJECT_SAMPLE_FACTORS - Syn_1_pos Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Positive RAW_FILE_NAME(Raw file name)=Syn_1_pos.mzML SUBJECT_SAMPLE_FACTORS - Syn_2_neg Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Negative RAW_FILE_NAME(Raw file name)=Syn_2_neg.mzML SUBJECT_SAMPLE_FACTORS - Syn_2_pos Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Positive RAW_FILE_NAME(Raw file name)=Syn_2_pos.mzML SUBJECT_SAMPLE_FACTORS - Syn_3_neg Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Negative RAW_FILE_NAME(Raw file name)=Syn_3_neg.mzML SUBJECT_SAMPLE_FACTORS - Syn_3_pos Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Positive RAW_FILE_NAME(Raw file name)=Syn_3_pos.mzML #COLLECTION CO:COLLECTION_SUMMARY Rhizosphere soil was collected from Artemisia argyi plants grown in a greenhouse CO:COLLECTION_SUMMARY pot experiment under cadmium stress. Plants received either no inoculum CO:COLLECTION_SUMMARY (control) or a native two-member SynCom. At harvest, roots were gently shaken to CO:COLLECTION_SUMMARY remove bulk soil; tightly adhered rhizosphere soil was brushed/vortexed from CO:COLLECTION_SUMMARY roots into sterile 2 mL tubes, immediately placed on ice, flash-frozen in liquid CO:COLLECTION_SUMMARY nitrogen within 30 min, and stored at −80 °C until extraction for LC-MS CO:COLLECTION_SUMMARY metabolomics. CO:COLLECTION_PROTOCOL_FILENAME XH_LC-MS_protocol.pdf CO:SAMPLE_TYPE rhizosphere soil CO:COLLECTION_METHOD Roots excised; bulk soil removed by gentle shaking. Remaining root-adhered soil CO:COLLECTION_METHOD brushed/vortexed into sterile 2 mL polypropylene tubes using sterile spatulas; CO:COLLECTION_METHOD tubes kept on wet ice; samples flash-frozen in liquid N₂ within 30 min. CO:COLLECTION_LOCATION Central South University, Changsha, Hunan, China CO:COLLECTION_FREQUENCY Once at harvest (day 60 after transplanting) CO:COLLECTION_DURATION 5 min per plant (from uprooting to freezing) CO:VOLUMEORAMOUNT_COLLECTED 0.20 g rhizosphere soil per sample (fresh weight) CO:STORAGE_CONDITIONS -80℃ #TREATMENT TR:TREATMENT_SUMMARY Artemisia argyi plants were grown in pots containing cadmium-contaminated mining TR:TREATMENT_SUMMARY soil with or without inoculation of a native synthetic microbial community. TR:TREATMENT Biological treatment TR:TREATMENT_COMPOUND native synthetic microbial community TR:TREATMENT_ROUTE Soil application TR:TREATMENT_DOSE SynCom inoculation: 50 mL suspension (OD600=0.8) per pot TR:PLANT_GROWTH_LOCATION Central South University, Changsha, China TR:PLANT_LIGHT_PERIOD 16 h light / 8 h dark photoperiod TR:PLANT_HUMIDITY 60 ± 5% RH TR:PLANT_TEMP 25 ± 2 °C TR:PLANT_WATERING_REGIME Watered with deionized water every 3 days to maintain ~60% field capacity TR:PLANT_NUTRITIONAL_REGIME No additional fertilizer applied TR:PLANT_ESTAB_DATE 2024-04-15 TR:PLANT_HARVEST_DATE 2024-06-15 #SAMPLEPREP SP:SAMPLEPREP_SUMMARY Fresh rhizosphere soil samples of Artemisia argyi were collected in the field, SP:SAMPLEPREP_SUMMARY immediately frozen in liquid nitrogen, and stored at –80 °C until extraction. SP:SAMPLEPREP_SUMMARY For LC-MS analysis, 100 mg of freeze-dried and homogenized soil was extracted SP:SAMPLEPREP_SUMMARY with 1 mL of 70% methanol (v/v) containing an internal standard. The mixture was SP:SAMPLEPREP_SUMMARY vortexed for 3 min and sonicated in an ice-water bath for 10 min, followed by SP:SAMPLEPREP_SUMMARY incubation at –20 °C for 1 h. Samples were centrifuged at 12,000 rpm for 10 SP:SAMPLEPREP_SUMMARY min at 4 °C, and the supernatant was filtered through a 0.22 μm PTFE membrane SP:SAMPLEPREP_SUMMARY and stored at –80 °C prior to LC-MS analysis. For GC-MS analysis, 100 mg of SP:SAMPLEPREP_SUMMARY homogenized soil was extracted with 1 mL of methanol:chloroform:water (2.5:1:1, SP:SAMPLEPREP_SUMMARY v/v/v), vortexed, sonicated, and centrifuged as above. The polar phase was SP:SAMPLEPREP_SUMMARY transferred to a fresh vial, dried under vacuum, derivatized with 20 mg/mL SP:SAMPLEPREP_SUMMARY methoxyamine hydrochloride in pyridine at 37 °C for 90 min, followed by SP:SAMPLEPREP_SUMMARY silylation with MSTFA at 37 °C for 30 min, and stored at –80 °C until SP:SAMPLEPREP_SUMMARY injection. SP:SAMPLEPREP_PROTOCOL_FILENAME XH_LC-MS_protocol.pdf SP:PROCESSING_METHOD Sample homogenization, solvent extraction, centrifugation, filtration SP:PROCESSING_STORAGE_CONDITIONS -80℃ SP:EXTRACTION_METHOD Methanol-based extraction for LC-MS; Methanol:chloroform:water extraction for SP:EXTRACTION_METHOD GC-MS SP:EXTRACT_ENRICHMENT Not applicable SP:EXTRACT_CLEANUP 0.22 μm PTFE membrane filtration (LC-MS extracts only) SP:EXTRACT_STORAGE -80℃ #CHROMATOGRAPHY CH:CHROMATOGRAPHY_SUMMARY Negative mode: Reversed-phase UHPLC separation of rhizosphere metabolite CH:CHROMATOGRAPHY_SUMMARY extracts was performed on a Thermo Vanquish system using the same Waters ACQUITY CH:CHROMATOGRAPHY_SUMMARY UPLC HSS T3 column (100 × 2.1 mm, 1.8 μm). The mobile phases consisted of CH:CHROMATOGRAPHY_SUMMARY Solvent A3 (5 mM ammonium formate in water) and Solvent B3 (acetonitrile). A CH:CHROMATOGRAPHY_SUMMARY gradient elution was applied (0–1 min, 8% B3; 1–8 min, 8–98% B3; 8–10 CH:CHROMATOGRAPHY_SUMMARY min, 98% B3; 10–10.1 min, 98–8% B3; 10.1–12 min, 8% B3). The flow rate was CH:CHROMATOGRAPHY_SUMMARY 0.30 mL/min with a column temperature maintained at 40 °C. CH:CHROMATOGRAPHY_TYPE Reversed phase CH:INSTRUMENT_NAME Thermo Vanquish CH:COLUMN_NAME Waters ACQUITY UPLC HSS T3 (100 x 2.1mm,1.8um) CH:SOLVENT_A 100% water; 5 mM Ammonium formate CH:SOLVENT_B 100% Acetonitrile CH:FLOW_GRADIENT 0–1 min, 8% B;1–8 min, 8–98% B;8–10 min, 98% B;10–10.1 min, CH:FLOW_GRADIENT 98–8% B;10.1–12 min, 8% B CH:FLOW_RATE 0.30 mL/min CH:COLUMN_TEMPERATURE 40 °C CH:METHODS_FILENAME XH_LC-MS_protocol.pdf #ANALYSIS AN:ANALYSIS_TYPE MS AN:ANALYSIS_PROTOCOL_FILE XH_LC-MS_protocol.pdf #MS MS:INSTRUMENT_NAME Thermo Q Exactive Orbitrap MS:INSTRUMENT_TYPE Orbitrap MS:MS_TYPE ESI MS:ION_MODE NEGATIVE MS:MS_COMMENTS LC–MS analysis was performed on a Vanquish UHPLC system (Thermo Fisher MS:MS_COMMENTS Scientific, USA) coupled to a Q Exactive Orbitrap mass spectrometer with an MS:MS_COMMENTS electrospray ionization (ESI) source operating in negative ion mode. Full MS:MS_COMMENTS MS-ddMS² acquisition was applied with sheath gas pressure 40 arb, aux gas flow MS:MS_COMMENTS 10 arb, spray voltage –2.50 kV, capillary temperature 325 °C, MS1 scan range MS:MS_COMMENTS m/z 100–1000, resolving power 70,000 (MS1) and 17,500 (MS2), normalized MS:MS_COMMENTS collision energy 30 eV, dynamic exclusion enabled. #MS_METABOLITE_DATA MS_METABOLITE_DATA:UNITS peak area MS_METABOLITE_DATA_START Samples N_1_neg N_2_neg N_3_neg Syn_1_neg Syn_2_neg Syn_3_neg Factors Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Negative Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Negative Sample source:rhizosphere soil | Treatment:No SynCom | IonMode:Negative Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Negative Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Negative Sample source:rhizosphere soil | Treatment:SynCom inoculation | IonMode:Negative Caproic acid 113184315.8 120923833.7 160948253.1 61044165.34 83784129.11 140336459.8 5-Aminopentanoic acid 8855574.86 1980269.904 6718028.387 8942020.297 2105428.526 9658339.221 trans-1,2-Cyclohexanediol 40150352.22 175805381.2 62839140.3 181657676.4 208486260.2 31064438.91 Betaine 29251952407 29905978640 28889304760 7184217516 32677381295 31970899129 Guanidoacetic acid 4425142.247 158725689.9 245133111.5 114727492.6 45591278.49 304035946.5 Caprylic acid 2203411.369 885269.257 515077.3476 645451.7419 407480.1209 624093.5554 Phenyl acetate 93852869.09 52825686.35 130118789.2 68353737.01 173324556.5 66584751.04 L-Arabinose 37667038.21 83341181.99 44322090.62 5558025.932 32302969.52 33493806.06 D-Lyxose 13075944.6 3416306.026 3179511.192 2800231.237 3482617.033 38388655.8 D-Arabinose 4643675.908 151077605.2 76274195.02 87267266.47 112322689.3 95750840.26 Nicotine 173366539.3 56307889.15 32716630.96 25803838.03 32369801.33 175257514.7 Phthalic acid 105803883.4 9815991.303 32542981.01 16541786.81 7519119.075 25906418.41 Desaminotyrosine 14866863.84 16157947.7 67362628.93 25850806.74 25073889.06 74475729.59 Guanidinosuccinic acid 1896546.425 1834599.857 1689523.425 4064458.395 4620720.98 10346555.72 Mannitol 8600992.585 8147847.385 19783909.83 3432837.602 21332632.54 4736610.204 5-Hydroxyindoleacetic acid 6041061.748 4644633.381 4971705.901 6112697.672 6040766.52 4837494.752 N-Acetyl-D-glucosamine 3328894.948 3251909.662 3488200.727 3539362.341 3039403.493 3365823.977 Thymidine 44271927.9 88031586.74 37198495.68 31533188.26 27796586.07 41788987.53 gamma-Glutamylcysteine 11041796.15 7596265.701 5469184.88 5738951.276 7158174.58 6578187.192 Palmitic acid 160639587.5 165402718.3 58496620.66 103898022 102192065.6 163937953.8 Dehydroepiandrosterone 9929841.294 10260631.45 37057612.11 3327977.218 20388943.41 12349966.79 2-Methoxyestradiol 1665844.379 2362602.275 2268054.716 2182221.844 2084521.153 2038260.252 Kaempferide 2700497.391 9622017.31 5400502.651 8594582.487 15538077.98 10227071.59 Sphinganine 3289903.059 3397411.507 4985754.864 1218687.239 4310061.841 3691616.251 Arachidonic acid 56085863.32 74280707.2 58236706.22 62089872.01 100368483 72495940.73 Arachidic acid 3076073.901 6792155.93 4796285.567 853494.0034 5525573.113 2410509.705 Daidzin 2103293.049 1671873.1 3470204.522 1764577.844 1527626.703 1750226.775 L-Iditol 12372590.17 12678316.72 4903806.414 3948526.61 4874829.626 27988463.54 Dodecanedioic acid 52153399.06 12683139.01 42932493.89 11165919.55 58411540.86 19694867.36 Palmitoleic acid 8308619.189 1903426.594 5412427.001 6672380.846 3894596.076 1918515.585 Gamma-Linolenic acid 27911899.7 8809252.875 8746424.118 7943076.581 37489093.15 9141585.683 Bovinic acid 252776425.5 160190619 316597987.5 251923907.5 215280729.7 150498498.8 Glycitein 75172917.19 32930800.29 22397729.37 17271237.44 67292498.22 87273429.8 Stearic acid 3715895.028 6484177.54 9982128.802 3440923.627 25497758.52 19433970.43 13-L-Hydroperoxylinoleic acid 9525548.531 9376189.195 11069177.68 16124676.8 14475139.07 14278687.84 13S-hydroxyoctadecadienoic acid 72778401.04 76176460.52 73586630.37 24508978.81 43765869.72 82525840.52 Behenic acid 2417260.764 1150492.293 1288637.572 246691797.5 186154130.7 4620710.362 LysoPA(16_0_0_0) 3222646.321 3153331.953 3781830.451 4840076.036 4562732.431 1175302.295 Cholesterol sulfate 4048798.847 4672803.028 4545654.56 2438379.459 2371517.486 3009400.962 1-Kestose 979919.4616 1500844.609 1599914.334 1623446.301 1642275.029 1805290.465 Biochanin A 10485738.72 11284978.9 27571733.58 2603139.675 3207816.569 6089325.05 6-Hydroxynicotinic acid 1650574.609 13955682.05 11278987.26 4436203.33 1797436.268 10143094.36 4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone 421735.9874 268410.0541 496473.6253 259726.701 2767577.135 343184.4267 Pentadecanoic acid 45858535.76 56818744.56 27448579.15 19850878.17 31678583.23 41005921.35 Alpha-Linolenic acid 115740821.9 113692787.5 101222020 120949702.9 57586617.74 66520810.96 Tetracosanoic acid 262442998.7 791826593.7 1746945820 16384563.67 43973285.91 69640717.56 12,13-DHOME 4791998.133 3707776.587 1762106.641 1472458.36 7903271.101 8480011.399 Coumafuryl 1245942.399 819305.948 1164143.422 2033051.274 1869601.326 1643103.192 MS_METABOLITE_DATA_END #METABOLITES METABOLITES_START metabolite_name mz RT formula KEGG ppm Caproic acid 114.9338 688.2 C6H12O2 C01585 6.573926956 5-Aminopentanoic acid 115.9212 357.2 C5H11NO2 C00431 13.79005367 trans-1,2-Cyclohexanediol 115.9206 688.2 C6H12O2 C03739 7.626933021 Betaine 116.9279 635.5 C5H11NO2 C00719 5.450569915 Guanidoacetic acid 116.9279 470.3 C3H7N3O2 C00581 5.2227652 Caprylic acid 124.9914 54.3 C8H16O2 C06423 11.33994035 Phenyl acetate 134.8954 574.6 C8H8O2 C00548 15.60254771 L-Arabinose 149.009 592.3 C5H10O5 C00259 4.487656262 D-Lyxose 149.9953 377.8 C5H10O5 C00476 14.03657263 D-Arabinose 149.9946 520.3 C5H10O5 C00216 9.053513746 Nicotine 160.9359 474.1 C10H14N2 C00745 8.77240497 Phthalic acid 165.0409 640.3 C8H6O4 C01606 4.745294488 Desaminotyrosine 165.0406 592.4 C9H10O3 C01744 3.583694424 Guanidinosuccinic acid 174.9566 218.6 C5H9N3O4 C03139 9.570732919 Mannitol 181.0737 421.6 C6H14O6 C00392 10.91268362 5-Hydroxyindoleacetic acid 191.1085 450.7 C10H9NO3 C05635 9.960254473 N-Acetyl-D-glucosamine 221.1549 522.4 C8H15NO6 C00140 3.175657089 Thymidine 223.0263 686.2 C10H14N2O5 C00214 7.139888215 gamma-Glutamylcysteine 248.9605 59.9 C8H14N2O5S C00669 1.239870622 Palmitic acid 255.2304 684 C16H32O2 C00249 8.758745224 Dehydroepiandrosterone 269.2086 674.6 C19H28O2 C01227 13.39530044 2-Methoxyestradiol 283.1701 552.1 C19H26O3 C05302 1.024119425 Kaempferide 299.2539 423.3 C16H12O6 C10098 16.43948526 Sphinganine 301.1659 554.6 C18H39NO2 C00836 0.586587512 Arachidonic acid 303.2359 604.9 C20H32O2 C00219 9.563511444 Arachidic acid 311.1675 683.7 C20H40O2 C06425 2.879465542 Daidzin 397.2254 462.8 C21H20O9 C10216 2.697588699 L-Iditol 181.0704 444.6 C6H14O6 C01507 7.312073094 Dodecanedioic acid 211.1327 556.9 C12H22O4 C02678 3.362814003 Palmitoleic acid 253.2184 676.6 C16H30O2 C08362 4.24929626 Gamma-Linolenic acid 277.219 681.7 C18H30O2 C06426 6.045761654 Bovinic acid 279.2298 615.5 C18H32O2 C04056 11.18791762 Glycitein 283.0646 548.8 C16H12O5 C14536 11.92660615 Stearic acid 284.2677 683.8 C18H36O2 C01530 13.36768124 13-L-Hydroperoxylinoleic acid 293.2115 504.9 C18H32O4 C04717 0.716206561 13S-hydroxyoctadecadienoic acid 295.2246 535.2 C18H32O3 C14762 10.92049917 Behenic acid 339.3262 677.2 C22H44O2 C08281 1.838938461 LysoPA(16_0_0_0) 409.2354 465.5 C19H39O7P C04036 1.524794776 Cholesterol sulfate 465.3061 563.2 C27H46O4S C18043 3.601929998 1-Kestose 503.1619 51.4 C18H32O16 C03661 0.198743188 Biochanin A 283.0647 486.2 C16H12O5 C00814 12.27987806 6-Hydroxynicotinic acid 138.0191 468.4 C6H5NO3 C01020 3.796575981 4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone 203.1077 433.2 C13H16O2 C10702 0.11816391 Pentadecanoic acid 241.2193 613.4 C15H30O2 C16537 8.191716003 Alpha-Linolenic acid 277.217 583.8 C18H30O2 C06427 1.097335301 Tetracosanoic acid 367.3571 572.6 C24H48O2 C08320 2.787478451 12,13-DHOME 295.2243 422.3 C18H34O4 C14829 10.19563769 Coumafuryl 297.0835 447 C17H14O5 C18599 22.47179665 METABOLITES_END #END