#METABOLOMICS WORKBENCH stephensondj_20250924_110522 DATATRACK_ID:6480 STUDY_ID:ST004270 ANALYSIS_ID:AN007107 PROJECT_ID:PR002696 VERSION 1 CREATED_ON October 9, 2025, 8:55 pm #PROJECT PR:PROJECT_TITLE Amino Acid Decarboxylation Preserves Salmonella Fitness During Phagocyte-Derived PR:PROJECT_TITLE Oxidative Stress PR:PROJECT_SUMMARY Successful establishment of infection by non-typhoidal Salmonella depends upon PR:PROJECT_SUMMARY its ability to resist the antimicrobial defenses of the host innate immune PR:PROJECT_SUMMARY response. To withstand the membrane depolarization that potentiates the killing PR:PROJECT_SUMMARY activity of reactive oxygen species (ROS) produced by the phagocyte NADPH PR:PROJECT_SUMMARY oxidase, Salmonella employs metabolic adaptations that maintain intracellular pH PR:PROJECT_SUMMARY homeostasis and membrane energetics. Here, we identify amino acid PR:PROJECT_SUMMARY decarboxylation as a critical determinant of Salmonella virulence and resistance PR:PROJECT_SUMMARY to the oxidative pressures within the host environment. The proton-consuming PR:PROJECT_SUMMARY decarboxylation of L-arginine preserves intracellular ∆pH and enhances PR:PROJECT_SUMMARY Salmonella survival against the bactericidal effects of ROS, while downstream PR:PROJECT_SUMMARY polyamine biosynthesis aids in bacterial recovery following ROS exposure. PR:PROJECT_SUMMARY Polyamines alone cannot substitute for the immediate, protective impact of PR:PROJECT_SUMMARY proton 26 consuming decarboxylation during oxidative stress killing. PR:PROJECT_SUMMARY Specifically, we show that Salmonella relies on the combined activity of the PR:PROJECT_SUMMARY inducible arginine AdiA and ornithine SpeF decarboxylases for resistance to PR:PROJECT_SUMMARY oxidative stress, and that this activity is essential for Salmonella virulence PR:PROJECT_SUMMARY during systemic infection. Together, amino acid decarboxylation and polyamine PR:PROJECT_SUMMARY biosynthesis play complementary, but distinct roles in Salmonella adaptation to PR:PROJECT_SUMMARY phagocyte-derived oxidative stress, providing a new framework for understanding PR:PROJECT_SUMMARY how amino acid catabolism influences bacterial survival in the host PR:INSTITUTE University of Colorado School of Medicine PR:DEPARTMENT Immunology and Microbiology PR:LAST_NAME Stephenson PR:FIRST_NAME Daniel PR:ADDRESS Research 1 South L18-1303 12801 E. 17th Ave., Aurora, Colorado, 80045, USA PR:EMAIL daniel.stephenson@cuanschutz.edu PR:PHONE 303-724-3339 #STUDY ST:STUDY_TITLE Amino Acid Decarboxylation Preserves Salmonella Fitness During Phagocyte-Derived ST:STUDY_TITLE Oxidative Stress ST:STUDY_SUMMARY Successful establishment of infection by non-typhoidal Salmonella depends upon ST:STUDY_SUMMARY its ability to resist the antimicrobial defenses of the host innate immune ST:STUDY_SUMMARY response. To withstand the membrane depolarization that potentiates the killing ST:STUDY_SUMMARY activity of reactive oxygen species (ROS) produced by the phagocyte NADPH ST:STUDY_SUMMARY oxidase, Salmonella employs metabolic adaptations that maintain intracellular pH ST:STUDY_SUMMARY homeostasis and membrane energetics. Here, we identify amino acid ST:STUDY_SUMMARY decarboxylation as a critical determinant of Salmonella virulence and resistance ST:STUDY_SUMMARY to the oxidative pressures within the host environment. The proton-consuming ST:STUDY_SUMMARY decarboxylation of L-arginine preserves intracellular ∆pH and enhances ST:STUDY_SUMMARY Salmonella survival against the bactericidal effects of ROS, while downstream ST:STUDY_SUMMARY polyamine biosynthesis aids in bacterial recovery following ROS exposure. ST:STUDY_SUMMARY Polyamines alone cannot substitute for the immediate, protective impact of ST:STUDY_SUMMARY proton 26 consuming decarboxylation during oxidative stress killing. ST:STUDY_SUMMARY Specifically, we show that Salmonella relies on the combined activity of the ST:STUDY_SUMMARY inducible arginine AdiA and ornithine SpeF decarboxylases for resistance to ST:STUDY_SUMMARY oxidative stress, and that this activity is essential for Salmonella virulence ST:STUDY_SUMMARY during systemic infection. Together, amino acid decarboxylation and polyamine ST:STUDY_SUMMARY biosynthesis play complementary, but distinct roles in Salmonella adaptation to ST:STUDY_SUMMARY phagocyte-derived oxidative stress, providing a new framework for understanding ST:STUDY_SUMMARY how amino acid catabolism influences bacterial survival in the host ST:INSTITUTE University of Colorado School of Medicine ST:LAST_NAME Stephenson ST:FIRST_NAME Daniel ST:ADDRESS Research 1 South L18-1303 12801 E. 17th Ave., Aurora, Colorado, 80045, USA ST:EMAIL daniel.stephenson@cuanschutz.edu ST:PHONE 303-724-3339 #SUBJECT SU:SUBJECT_TYPE Bacteria SU:SUBJECT_SPECIES Salmonella enterica SU:TAXONOMY_ID 28901 #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data SUBJECT_SAMPLE_FACTORS - DS2-098-001 Treatment:MOPS-glucose | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-001_R10_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-001_R10_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-002 Treatment:MOPS-glucose | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-002_R19_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-002_R19_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-003 Treatment:MOPS-glucose | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-003_R14_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-003_R14_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-004 Treatment:MOPS-glucose | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-004_R17_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-004_R17_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-005 Treatment:MOPS-glucose | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-005_R11_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-005_R11_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-011 Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-011_R18_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-011_R18_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-012 Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-012_R27_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-012_R27_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-013 Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-013_R12_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-013_R12_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-014 Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-014_R16_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-014_R16_5MMpos.raw SUBJECT_SAMPLE_FACTORS - DS2-098-015 Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Sample Groups=WT; RAW_FILE_NAME(Raw File Names Neg)=DS2-098-015_R29_5MMneg.raw; RAW_FILE_NAME(Raw File Names Pos)=DS2-098-015_R29_5MMpos.raw #COLLECTION CO:COLLECTION_SUMMARY Salmonella grown overnight in LB broth at 37°C were diluted to CO:COLLECTION_SUMMARY 5 × 10⁷ CFU/mL in MOPS–glucose minimal medium and incubated CO:COLLECTION_SUMMARY aerobically at 37°C for 4 h. Cultures were divided and either treated with or CO:COLLECTION_SUMMARY without 400 µM H₂O₂ for 30 min. Cells were harvested by centrifugation CO:COLLECTION_SUMMARY at 8,000 × g for 5 min, and pellets were flash-frozen and stored at CO:COLLECTION_SUMMARY –80°C prior to extraction. CO:SAMPLE_TYPE Bacterial cells #TREATMENT TR:TREATMENT_SUMMARY Cultures were routinely started from either a small amount of -80°C DMSO stock TR:TREATMENT_SUMMARY or a single colony, which was inoculated into the appropriate liquid growth TR:TREATMENT_SUMMARY medium and grown overnight (16 to 20 h) aerobically at 37°C with shaking. Where TR:TREATMENT_SUMMARY indicated, either LB (Lysogeny broth), EG (Essential salts + glucose) minimal TR:TREATMENT_SUMMARY media [1.7 mM MgSO4, 9.5 mM citric acid, 57.4 mM K2HPO4,16.7 mM H5NNaO4P, 0.4% TR:TREATMENT_SUMMARY D-Glucose; pH 7.0 unless otherwise noted], or MOPS (Morpholino propanesulfonic TR:TREATMENT_SUMMARY acid) minimal media [40 mM MOPS buffer, 4 mM tricine, 0.4% D glucose, 2mM TR:TREATMENT_SUMMARY K2HPO4, 10 µM FeSO4·7H2O, 9.5 mM NH4Cl, 276 µM K2SO4, 500 nM CaCl2, 50 mM TR:TREATMENT_SUMMARY NaCl, 525 µM MgCl2, 2.9 nM (NH4)6Mo7O24·4H2O, 400 nM H3BO3, 30 nM CoCl2, 9.6 TR:TREATMENT_SUMMARY nM CuSO4, 80.8 nM MnCl2, and 9.74 nM ZnSO4; pH 7.2] were used. The initial pH of TR:TREATMENT_SUMMARY all media formulations supplemented with amino acids and/or putrescine was TR:TREATMENT_SUMMARY measured and confirmed to 25 match that of the unsupplemented base medium (pH TR:TREATMENT_SUMMARY 7.0). For H2O2 survival, qRT-PCR, and intracellular pH assays, overnight TR:TREATMENT_SUMMARY cultures were grown in EG minimal media supplemented with 80 µg/mL of the TR:TREATMENT_SUMMARY appropriate amino acid(s) for the catabolic pathway of interest (i.e. L-arginine TR:TREATMENT_SUMMARY for ∆adiA, ∆speA, ∆adiA∆speA, and ∆speB; L-ornithine for ∆speF, TR:TREATMENT_SUMMARY ∆speC, and ∆speF∆speC; and L arginine + L-ornithine for ∆adiA∆speF, TR:TREATMENT_SUMMARY ∆speA∆speC, and ∆adiA∆speA∆speF∆speC). As appropriate, penicillin, TR:TREATMENT_SUMMARY chloramphenicol, or kanamycin was added at final concentrations of 250, 20, or TR:TREATMENT_SUMMARY 50 µg/mL, respectively. To determine CFU, bacterial cultures were serially TR:TREATMENT_SUMMARY diluted 10-fold in phosphate-buffered saline (PBS) and spread onto LB agar TR:TREATMENT_SUMMARY plates followed by growth at 37°C for 16 h. Salmonella grown overnight in LB TR:TREATMENT_SUMMARY broth at 37°C were diluted to 5 × 10⁷ CFU/mL in MOPS–glucose minimal TR:TREATMENT_SUMMARY medium and incubated aerobically with shaking at 37°C for 4 h. Cultures were TR:TREATMENT_SUMMARY then split and either left untreated or 400 µM H2O2 was directly added to the TR:TREATMENT_SUMMARY treatment samples. Both untreated and treated samples were then incubated for 30 TR:TREATMENT_SUMMARY min at 37°C with shaking. Cells were then harvested by centrifugation at TR:TREATMENT_SUMMARY 8,000 × g for 5 min, and pellets were flash frozen and stored at –80°C TR:TREATMENT_SUMMARY prior to extraction. #SAMPLEPREP SP:SAMPLEPREP_SUMMARY Metabolomics were extracted via protein crash. Extraction of metabolomics from SP:SAMPLEPREP_SUMMARY cells was as follows: Variable amounts of cold MeOH:ACN:H2O (5:3:2, v:v:v) were SP:SAMPLEPREP_SUMMARY added to each sample for a final cell concentration of 6.5e8 CFU/mL. Samples SP:SAMPLEPREP_SUMMARY were then vortexed at 4 °C for 30 minutes. Following vortexing, samples were SP:SAMPLEPREP_SUMMARY centrifuged at 12700 RPM for 10 minutes at 4 °C and supernatant was transferred SP:SAMPLEPREP_SUMMARY to a new autosampler vial for analysis. A portion of extract from each sample SP:SAMPLEPREP_SUMMARY was also combined to create a technical mixture, injected throughout the run for SP:SAMPLEPREP_SUMMARY quality control. #CHROMATOGRAPHY CH:CHROMATOGRAPHY_SUMMARY Metabolomics Positive CH:CHROMATOGRAPHY_TYPE Reversed phase CH:INSTRUMENT_NAME Thermo Vanquish CH:COLUMN_NAME Waters ACQUITY UPLC BEH C18 (100 x 2.1mm,1.7um) CH:SOLVENT_A 100% Water; 0.1% Formic Acid CH:SOLVENT_B 100% Acetonitrile; 0.1% Formic Acid CH:FLOW_GRADIENT 0 min - 0.45 ml/min - 0% B, 0.5 min - 0.45ml/min - 0% B, 1.1 min - 0.45ml/min - CH:FLOW_GRADIENT 100% B, 2.75 min - 0.45ml/min - 100% B, 3 min - 0.45ml/min - 0% B, 5min - CH:FLOW_GRADIENT 0.45ml/min - 0%B CH:FLOW_RATE 0.45mL/min CH:COLUMN_TEMPERATURE 45 CH:CHROMATOGRAPHY_COMMENTS The times mentioned in the flow gradient are the specific time the gradient CH:CHROMATOGRAPHY_COMMENTS changes in the method. The methods were 5 minutes. #ANALYSIS AN:ANALYSIS_TYPE MS #MS MS:INSTRUMENT_NAME Thermo Orbitrap Exploris 120 MS:INSTRUMENT_TYPE Orbitrap MS:MS_TYPE ESI MS:ION_MODE POSITIVE MS:MS_COMMENTS El-Maven used for data analysis. Orbitrap scanning in full MS mode from 65-975 MS:MS_COMMENTS m/z at 120,000 resolution, with 50 Arb sheath gas, 10 Arb auxiliary gas, and 3.5 MS:MS_COMMENTS kV spray voltage. #MS_METABOLITE_DATA MS_METABOLITE_DATA:UNITS Peak area MS_METABOLITE_DATA_START Samples DS2-098-001 DS2-098-002 DS2-098-003 DS2-098-004 DS2-098-005 DS2-098-011 DS2-098-012 DS2-098-013 DS2-098-014 DS2-098-015 Factors Treatment:MOPS-glucose | Sample source:Salmonella Treatment:MOPS-glucose | Sample source:Salmonella Treatment:MOPS-glucose | Sample source:Salmonella Treatment:MOPS-glucose | Sample source:Salmonella Treatment:MOPS-glucose | Sample source:Salmonella Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella Treatment:MOPS-glucose 400 uM H2O2 | Sample source:Salmonella L-alanine 3446568 4671243 4249296 4052406 3395492 6206736 6589668 5500088 6186937 6890465 L-arginine 601158 489161 608785 519021 541478 1808969 2226538 2057285 2278214 1820995 L-asparagine 7831 12015 10619 4024 20775 100047 66780 74068 64704 45140 L-glutamine 1652386 1499657 2110261 1942224 2109445 7208789 3084903 6285371 9449817 8656345 glycine 59275 77256 74899 43609 72379 51597 99522 55224 74108 63177 L-leucine/isoluecine 1038564 1148253 1359240 1090158 1159310 1543214 1259574 1513377 1556121 1390601 L-lysine 140339 164686 139889 117487 127802 937121 914608 857412 729271 775212 L-methionine 489513 648235 705139 560686 584321 468159 473512 480145 412394 341667 L-phenylalanine 1107308 1091452 1417773 1161410 1079583 785105 1140368 757616 1069908 1148245 L-proline 1882066 2040827 1933345 1703048 1917248 2302353 2867812 2030837 1884526 1736172 L-serine 76444 76117 132027 121596 206322 108399 553257 110950 217987 84815 L-threonine 461337 845022 634123 602459 513122 2344527 2344328 2223815 2134007 2053121 L-tryptophan 331703 367278 424623 346234 339470 250068 443261 235803 328098 333858 L-tyrosine 836546 844263 918202 611160 775116 599814 825441 553500 682380 501103 L-valine 30894634 33956276 37830884 34410588 32308808 30659958 28106576 31296378 32053794 28214056 Adenosine 357785 372481 333049 253773 215042 353646 532067 465637 363985 193038 Adenine 342652 361897 380461 267991 298744 200388 183894 228218 183533 75306 Cytosine 35920 161409 48846 49162 39699 107922 166305 66358 54060 59444 Inosine 134226 77229 131348 128965 44046 270496 161917 286105 297096 234807 Hypoxanthine 3778883 2960524 3021710 2188072 2970390 973938 1278321 867064 792634 622428 Xanthine 118027 187814 158023 112981 128021 89012 119719 93376 111475 104567 5-Hydroxyisourate 56360 39599 26705 48702 46447 250673 233846 398868 506426 450575 3',5'-Cyclic AMP 70083 90239 99296 111457 110898 140717 250625 149909 88029 89317 Pyridoxamine 5'-phosphate 136895 204564 181774 178438 151635 291813 415027 245014 258044 338253 Nicotinamide 578785 593594 666372 540324 473397 635366 837322 533636 646426 538773 Flavin mononucleotide 1074463 587198 645625 1168963 668750 375244 289187 336974 571859 706498 L-Citrulline 309477 197691 290303 355957 494841 377168 1230160 368901 458967 347438 Argininosuccinate 37588 36319 33817 34345 20144 51013 27901 58144 38378 41457 Putrescine 655369 4101519 2125138 715074 721080 3415287 1627486 1261349 700191 354178 Spermidine 384478 2906301 1043613 570492 410272 3825037 1956346 1376519 1198261 680567 D-Glucosamine 6495538 7353348 6695654 8976732 5782312 4913320 5733887 3779010 5051048 9359314 N-Acetyl-L-ornithine 65261 40767 49069 60394 42298 279147 297785 295927 223308 234084 L-Methionine S-oxide 14175 6165 10151 5228 16312 12168 2980 4013 22861 4610 N-formyl kynurenine 2924039 3373657 3313495 3246880 2953851 3190308 3607476 2670343 2596894 3579046 Choline 61238 129567 69080 57330 100012 73870 73799 60723 190819 138464 L-Carnitine 26628 127024 16488 27587 25123 51056 39962 20661 164894 34804 AC(5:1) 96128 80695 90640 82827 94542 106064 101009 91915 93721 107607 AC(8:0) 117862 180369 146267 168672 163398 184624 194250 185497 152457 204569 AC(8:1) 136232 113834 128548 156795 129431 124209 130768 139795 147702 124481 AC(10:0) 10892 57213 76009 56489 87241 71204 139254 37291 45203 35686 AC(10:1) 445793 785185 652024 543752 401843 644261 674664 505225 555220 639584 AC(12:1) 93360 117843 124677 93614 104619 128841 117291 102700 118227 95939 AC(16:0) 79579 150003 150002 134301 85160 79493 100644 99659 180019 82035 AC(18:0) 343264 2197911 520265 179349 103854 392633 740536 761864 2343605 173128 AC(20:4) 25049 390559 170449 13453 21421 17796 91262 701286 72297 54524 MS_METABOLITE_DATA_END #METABOLITES METABOLITES_START metabolite_name CmpdID Pathway parent m/z medRt Polarity L-alanine C00041 Amino acids 90.055 0.530 [M+H]+ L-arginine C00062 Amino acids 175.119 0.500 [M+H]+ L-asparagine C00152 Amino acids 133.061 0.517 [M+H]+ L-glutamine C00064 Amino acids 147.076 0.526 [M+H]+ glycine C00037 Amino acids 76.039 0.534 [M+H]+ L-leucine/isoluecine C00123 Amino acids 132.102 0.599 [M+H]+ L-lysine C00047 Amino acids 147.113 0.467 [M+H]+ L-methionine C00073 Amino acids 150.058 0.566 [M+H]+ L-phenylalanine C00079 Amino acids 166.086 1.635 [M+H]+ L-proline C00148 Amino acids 116.071 0.559 [M+H]+ L-serine C00065 Amino acids 106.050 0.515 [M+H]+ L-threonine C00188 Amino acids 120.066 0.530 [M+H]+ L-tryptophan C00078 Amino acids 205.097 1.651 [M+H]+ L-tyrosine C00082 Amino acids 182.081 0.562 [M+H]+ L-valine C00183 Amino acids 118.086 0.561 [M+H]+ Adenosine C00212 Nucleotides 268.104 0.561 [M+H]+ Adenine C00147 Nucleotides 136.062 0.560 [M+H]+ Cytosine C00380 Nucleotides 112.051 0.553 [M+H]+ Inosine C00294 Nucleotides 269.088 0.560 [M+H]+ Hypoxanthine C00262 Nucleotides 137.046 0.569 [M+H]+ Xanthine C00385 Nucleotides 153.041 0.563 [M+H]+ 5-Hydroxyisourate C11821 Nucleotides 185.032 0.528 [M+H]+ 3',5'-Cyclic AMP C00575 Nucleotides 330.060 0.560 [M+H]+ Pyridoxamine 5'-phosphate C00647 Nucleotides 249.064 0.526 [M+H]+ Nicotinamide C00153 Nucleotides 123.055 0.561 [M+H]+ Flavin mononucleotide C00061 Nucleotides 457.108 0.558 [M+H]+ L-Citrulline C00327 Urea cycle 176.102 0.543 [M+H]+ Argininosuccinate C03406 Urea cycle 291.130 0.538 [M+H]+ Putrescine C00134 Polyamines 89.107 0.462 [M+H]+ Spermidine C00315 Polyamines 146.165 0.445 [M+H]+ D-Glucosamine C00329 Aminosugars 180.087 0.533 [M+H]+ N-Acetyl-L-ornithine C00437 Arginine and proline metabolism 175.108 0.559 [M+H]+ L-Methionine S-oxide C02989 Sulfur metabolism 166.052 0.556 [M+H]+ N-formyl kynurenine C02700 Indole and Tryptophan 237.090 0.526 [M+H]+ Choline C00114 Glycerophospholipid biosynthesis 104.107 0.515 [M+H]+ L-Carnitine C00318 Carnitine and fatty acid metabolsim 162.112 0.547 [M+H]+ AC(5:1) HMDB02366 Carnitine and fatty acid metabolsim 244.154 1.804 [M+H]+ AC(8:0) HMDB00791 Carnitine and fatty acid metabolsim 288.217 1.995 [M+H]+ AC(8:1) ac111 Carnitine and fatty acid metabolsim 286.201 1.852 [M+H]+ AC(10:0) HMDB00651 Carnitine and fatty acid metabolsim 316.248 2.194 [M+H]+ AC(10:1) CID57357170 Carnitine and fatty acid metabolsim 314.238 2.199 [M+H]+ AC(12:1) HMDB13326 Carnitine and fatty acid metabolsim 342.264 1.711 [M+H]+ AC(16:0) C02990 Carnitine and fatty acid metabolsim 400.342 1.923 [M+H]+ AC(18:0) HMDB00848 Carnitine and fatty acid metabolsim 428.374 1.930 [M+H]+ AC(20:4) ac125 Carnitine and fatty acid metabolsim 448.338 2.525 [M+H]+ METABOLITES_END #END