#METABOLOMICS WORKBENCH suseha_20251208_050731 DATATRACK_ID:6853 STUDY_ID:ST004496 ANALYSIS_ID:AN007538 PROJECT_ID:PR002830 VERSION 1 CREATED_ON December 27, 2025, 5:55 pm #PROJECT PR:PROJECT_TITLE TIGAR Regulates Intestinal Mucus Barrier Integrity by Inhibiting Lactylation of PR:PROJECT_TITLE G6PD/6PGD in Ulcerative Colitis PR:PROJECT_SUMMARY Oxidative stress and metabolic dysregulation in goblet cells represent PR:PROJECT_SUMMARY significant contributors to the pathogenesis of ulcerative colitis (UC). TIGAR PR:PROJECT_SUMMARY (TP53-induced glycolysis and apoptosis regulator) plays a critical role as a PR:PROJECT_SUMMARY metabolic regulatory enzyme by promoting NADPH synthesis, thereby counteracting PR:PROJECT_SUMMARY oxidative stress. However, the precise mechanisms through which TIGAR regulates PR:PROJECT_SUMMARY NADPH synthesis and its impact on UC remain incompletely understood. Here, we PR:PROJECT_SUMMARY demonstrate that TIGAR inhibits the lactylation of glucose-6-phosphate PR:PROJECT_SUMMARY dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD), both pivotal PR:PROJECT_SUMMARY enzymes in the NADPH biosynthesis pathway, hence preserving their enzymatic PR:PROJECT_SUMMARY activities. We further identify specific lactylation sites at lysine 432 (K432) PR:PROJECT_SUMMARY in G6PD and lysine 38 (K38) in 6PGD. Lactylation modifications impact the PR:PROJECT_SUMMARY formation of G6PD homodimers and the binding of 6PGD with NADP+. In male UC PR:PROJECT_SUMMARY mice, persistently low TIGAR expression results in elevated lactic acid levels, PR:PROJECT_SUMMARY which enhance the lactylation of G6PD and 6PGD, inhibit NADPH synthesis, and PR:PROJECT_SUMMARY exacerbate oxidative stress in goblet cells. Consequently, these alterations PR:PROJECT_SUMMARY lead to a reduction in thioredoxin 1 (Trx1) reductase activity, inducing PR:PROJECT_SUMMARY S-nitrosylation of anterior gradient homolog 2 (AGR2), a key enzyme involved in PR:PROJECT_SUMMARY MUC2 modification, thus impeding mature MUC2 production and compromising the PR:PROJECT_SUMMARY integrity of the intestinal mucus barrier. Overall, our study elucidates the PR:PROJECT_SUMMARY critical mechanisms by which TIGAR regulates NADPH synthesis, provides novel PR:PROJECT_SUMMARY insights into how TIGAR maintains cellular redox homeostasis, and offers PR:PROJECT_SUMMARY experimental evidence for considering TIGAR as a potential target for UC PR:PROJECT_SUMMARY therapy. PR:INSTITUTE Southwest Hospital, Third Military Medical University PR:DEPARTMENT Clinical Medical Research Center PR:LABORATORY Clinical Medical Research Center PR:LAST_NAME Sen PR:FIRST_NAME Su PR:ADDRESS Gaotanyan Street, Shapingba District, Chongqing, China PR:EMAIL 1441suse@163.com PR:PHONE 0086015023351789 #STUDY ST:STUDY_TITLE Untargeted metabolomics of the colon tissues from TIGARf/f mice and ST:STUDY_TITLE TIGARf/fVil1-Cre mice ST:STUDY_SUMMARY In a previous untargeted metabolomics study, we observed significant ST:STUDY_SUMMARY accumulation of 6-phosphogluconate (6-PG) and elevated lactate levels in ST:STUDY_SUMMARY TIGAR-knockout HT-29 cells. To investigate whether this metabolic phenotype is ST:STUDY_SUMMARY conserved in vivo, we employed an intestinal epithelial cell–specific TIGAR ST:STUDY_SUMMARY knockout mouse model. TIGARf/f mice, harboring loxP sites flanking exon 2 of the ST:STUDY_SUMMARY TIGAR locus, were crossed with Villin1-Cre (Vil1-Cre) transgenic mice to ST:STUDY_SUMMARY generate TIGARf/fVil1-Cre mice with conditional deletion of TIGAR in the ST:STUDY_SUMMARY intestinal epithelium. Colon tissues (∼25 mg,n = 3 biological replicates per ST:STUDY_SUMMARY group) were collected from TIGARf/f mice and TIGARf/fVil1-Cre mice. Strikingly, ST:STUDY_SUMMARY levels of both 6-PG and lactate were significantly elevated in the colonic ST:STUDY_SUMMARY tissues of TIGARf/fVil1-Cre mice compared to controls. These results demonstrate ST:STUDY_SUMMARY that TIGAR plays a critical and conserved role in regulating glycolytic and ST:STUDY_SUMMARY pentose phosphate pathway metabolism in the intestinal epithelium in vivo. ST:INSTITUTE Southwest Hospital, Third Military Medical University ST:LAST_NAME Su ST:FIRST_NAME Sen ST:ADDRESS Gaotanyan Street 30, Shapingba District, Chongqing, Chongqing, 400038, China ST:EMAIL 1441suse@163.com ST:PHONE 0086015023351789 #SUBJECT SU:SUBJECT_TYPE Mammal SU:SUBJECT_SPECIES Mus musculus SU:TAXONOMY_ID 10090 #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data SUBJECT_SAMPLE_FACTORS - Cont-1 Genotype:Wild-type | Sample source:colon RAW_FILE_NAME(Raw file name)=Cont-1.raw SUBJECT_SAMPLE_FACTORS - Cont-2 Genotype:Wild-type | Sample source:colon RAW_FILE_NAME(Raw file name)=Cont-2.raw SUBJECT_SAMPLE_FACTORS - Cont-3 Genotype:Wild-type | Sample source:colon RAW_FILE_NAME(Raw file name)=Cont-3.raw SUBJECT_SAMPLE_FACTORS - KO-1 Genotype:TIGAR-knockout | Sample source:colon RAW_FILE_NAME(Raw file name)=cre-1.raw SUBJECT_SAMPLE_FACTORS - KO-2 Genotype:TIGAR-knockout | Sample source:colon RAW_FILE_NAME(Raw file name)=cre-2.raw SUBJECT_SAMPLE_FACTORS - KO-3 Genotype:TIGAR-knockout | Sample source:colon RAW_FILE_NAME(Raw file name)=cre-3.raw #COLLECTION CO:COLLECTION_SUMMARY TIGARf/f mice have two lox sites on both sides of exon 2 in the TIGAR locus. CO:COLLECTION_SUMMARY Floxed mice were crossed with Vil1-Cre mice to obtain tissue-specific knockout CO:COLLECTION_SUMMARY of TIGAR. the mice were subjected to a 12-hour fasting period before treatment. CO:SAMPLE_TYPE Colon #TREATMENT TR:TREATMENT_SUMMARY No treatment #SAMPLEPREP SP:SAMPLEPREP_SUMMARY 25 mg of colon tissue was weighed and mixed with 750 μL of pre-chilled 80% SP:SAMPLEPREP_SUMMARY methanol for mouse colon samples. A low-temperature tissue grinder was utilized SP:SAMPLEPREP_SUMMARY to homogenize the tissue for 60 seconds at -20°C, with a 30-second pause, SP:SAMPLEPREP_SUMMARY repeated three times. The resulting homogenates from cells and colons were SP:SAMPLEPREP_SUMMARY transferred and incubated at -20°C for 60 minutes. Subsequently, samples were SP:SAMPLEPREP_SUMMARY centrifuged at 18,410 x g for 10 minutes at 4°C. The supernatant was collected SP:SAMPLEPREP_SUMMARY after centrifugation, dried under a nitrogen gas, reconstituted, and centrifuged SP:SAMPLEPREP_SUMMARY again to obtain the supernatant for subsequent analysis. A 20 μL aliquot from SP:SAMPLEPREP_SUMMARY each sample was combined to prepare a quality control (QC) mixture for mass SP:SAMPLEPREP_SUMMARY spectrometry analyses. #CHROMATOGRAPHY CH:CHROMATOGRAPHY_TYPE HILIC CH:INSTRUMENT_NAME Thermo Vanquish CH:COLUMN_NAME Waters Atlantis Premier BEH Z-HILIC Column (2.1 × 100 mm, 1.7 μm) CH:SOLVENT_A 5% acetonitrile/95% water; 15 mM ammonium acetate (pH 9.0) CH:SOLVENT_B 95% acetonitrile/5% water; 15 mM ammonium acetate (pH 9.0) CH:FLOW_GRADIENT 0-5 min: 90% B-65% B; 5-6 min: 65% B-65% B; 6 -8 min: 65% B-90% B; 8-10 min: 90% CH:FLOW_GRADIENT B CH:FLOW_RATE 0.5 mL/min CH:COLUMN_TEMPERATURE 30℃ CH:METHODS_FILENAME Chromatography_methods0726.txt #ANALYSIS AN:ANALYSIS_TYPE MS AN:ANALYSIS_PROTOCOL_FILE MS_analysis_methods0726.txt #MS MS:INSTRUMENT_NAME Thermo Orbitrap Exploris 120 MS:INSTRUMENT_TYPE Orbitrap MS:MS_TYPE ESI MS:ION_MODE NEGATIVE MS:MS_COMMENTS The MS parameters for detection were: ESI source voltage 3.0 kV in negative ion MS:MS_COMMENTS scanning mode with scan range of m/z 70-1050 for mass spectrometry scanning, MS:MS_COMMENTS full scanning resolution of 120000, and MS2 scanning resolution of 60000, the MS:MS_COMMENTS top four precursor ions were broken up with the higher energy collisional MS:MS_COMMENTS dissociation cell in MS2 set to 30% normalized collision energy. the sheath gas MS:MS_COMMENTS was set at 60 arbitrary units, the auxiliary gas was set at 20 arbitrary units, MS:MS_COMMENTS and the blow air flow rate of 2Arb; the ion transport tube was set to 380 ° C; MS:MS_COMMENTS the vaporizer temperature of the ion source was set to 350 ° C. Software tools MS:MS_COMMENTS Xcalibur 4.3 (Thermo Fisher Scientific) and Compound Discover 3.3 (Thermo Fisher MS:MS_COMMENTS Scientific) were used for data processing and analyzing.Retention time alignment MS:MS_COMMENTS across all samples was achieved using the ChromeAlign node, with a pooled MS:MS_COMMENTS quality control (QC) sample serving as the reference. The pooled QC sample was MS:MS_COMMENTS prepared by combining equal aliquots from all biological samples. It was MS:MS_COMMENTS injected repeatedly—once every 10 analytical runs—to monitor instrument MS:MS_COMMENTS stability, enable batch effect correction, and support data normalization. MS:MS_COMMENTS Putative metabolite features were detected and grouped across all samples using MS:MS_COMMENTS the following key parameters (all other settings remained at default values): MS:MS_COMMENTS minimum peak intensity threshold of 1 × 10⁵ (area under the curve); mass MS:MS_COMMENTS tolerance of 5 ppm; retention time tolerance of 0.25 min; ionization modes MS:MS_COMMENTS limited to [M – H]⁻; and peak rating filter set to 4. Missing values were MS:MS_COMMENTS imputed using the built-in “Fill Gap” function, configured with a mass MS:MS_COMMENTS tolerance of 5 ppm and a signal-to-noise ratio threshold of 1.5. Metabolite MS:MS_COMMENTS identification was carried out through a tiered annotation strategy. Matching of MS:MS_COMMENTS both accurate mass (±5 ppm) and retention time (±0.5 min) to an in-house MS:MS_COMMENTS spectral library generated from authentic commercial standards, or spectral MS:MS_COMMENTS matching against the mzCloud database (https://www.mzcloud.org/) and mzVault MS:MS_COMMENTS database using MS/MS fragmentation data, with precursor and fragment mass MS:MS_COMMENTS tolerances of 10 ppm and a minimum match factor of 50. #MS_METABOLITE_DATA MS_METABOLITE_DATA:UNITS peak area MS_METABOLITE_DATA_START Samples Cont-1 Cont-2 Cont-3 KO-1 KO-2 KO-3 Factors Genotype:Wild-type | Sample source:colon Genotype:Wild-type | Sample source:colon Genotype:Wild-type | Sample source:colon Genotype:TIGAR-knockout | Sample source:colon Genotype:TIGAR-knockout | Sample source:colon Genotype:TIGAR-knockout | Sample source:colon Acrylic acid 45601857 45942991 44923366 108243134 110370759 107149624 Glycine 37564133 37980472 40367452 108646827 108262854 107715899 Pyruvic acid 86789949 89876419 90712083 209864037 212724492 215801139 Isobutyric acid 13264890 30115737 25408396 8382824 9139238 8997462 β-Alanine 96051946 99495020 105777916 265877683 255769441 274882838 Lactic acid 1595026177 1638746422 1659031876 4630446203 4667004113 4790366933 Valeric acid 7873269 11622273 11648829 16125391 15025895 16033010 Malonic acid 23814224 4564271 20274530 29665984 24801805 5510998 3-Hydroxybutyric acid 18595510 20067945 18980493 50999843 51466409 49577891 Uracil 6902268 9857496 10058318 27556443 28171500 29000583 Glutaric anhydride 335904 516513 366798 1445109 1606907 1246876 Fumaric acid 6730961 7416501 7672116 12873127 12791355 12406041 5-Aminovaleric acid 112425648 118801920 116768513 355103534 360419445 364464505 Threonine 92584593 97158655 97387957 183079277 188682431 183285497 Taurine 5635959 5631849 5870226 11411751 11308434 11679872 4-Oxoproline 149915374 149102369 150234399 429017398 394042248 425926475 DL-β-Leucine 301879797 307507128 299604836 792797400 795249615 804273234 Asparagine 32100676 34323569 34519112 87058757 84006835 83231324 Malic acid 71434652 56307676 51840450 54165192 56205108 56938833 Adenine 47272177 62920761 62777259 111969634 118472324 119938155 Hypoxanthine 7804345 9978476 7294124 25379612 27664813 28514089 Xanthine 108560858 142826909 136372293 239584720 251033152 250243494 Glycolic acid 2871442 5018576 5734964 11727650 11407695 11706821 1-Chlorobenzotriazole 238525698 258561315 275987069 557595345 572646669 553443433 Glycerol 3-phosphate 3596310 739170 3540043 6797766 6293329 6227370 Nonanoic acid 9032401 24112073 29554899 40722724 39756533 36260007 L-Phenylalanine 71212887 75159227 73219712 190227201 192258938 169175918 7-Methylxanthine 6095462 10130696 9231223 24695335 21956330 24359825 (2R)-2,3-Dihydroxypropanoic acid 67201087 65395897 70273288 115479263 118575901 112593702 4-Phenolsulfonic acid 36120356 36755192 37273932 31359700 32033344 30690256 N-α-Acetyl-L-asparagine 2219190 1006963 893499 1967182 2251710 2117683 Theophylline 210676090 225960142 185419368 161962219 159419543 162491079 L-threo-3-Phenylserine 47547028 62184938 60211828 139678362 130289071 129740317 L-Iditol 12488170 8617893 7752204 6612498 6759714 7045465 4-Pyridoxic acid 10060507 12217817 11481962 20359479 20897697 20576624 6-Phosphogluconic acid 3572462 3203867 3575329 12212839 12911573 12622901 Salicylic acid 16328432 16573288 14054608 57783879 57568283 56649837 Guanosine 6691926 7060715 7048767 36759981 37716532 36395408 4-Dodecylbenzenesulfonic acid 28192708 40744694 28027302 34359507 30294320 28397655 Lithocholic Acid 35446741 49558142 42592685 22729513 20869887 15398001 Uridine 5'-diphosphoglucuronic acid 12878836 12149524 11885595 64909629 63588265 62950513 MS_METABOLITE_DATA_END #METABOLITES METABOLITES_START metabolite_name formula quantified m/z retention index PubChem ID KEGG ID HMDB ID SMILES InChI Key Classification Category Acrylic acid C3 H4 O2 71.0139 4.45 6581 C19501 HMDB0031647 OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N Organic acids and derivatives Glycine C2 H5 N O2 74.0248 4.61 750 C00037 HMDB0000123 NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N Organic acids and derivatives Pyruvic acid C3 H4 O3 87.0088 4.71 1060 C00022 HMDB0000243 CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N Organic acids and derivatives Isobutyric acid C4 H8 O2 87.0452 1.48 6590 C02632 HMDB0001873 CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N Organic acids and derivatives β-Alanine C3 H7 N O2 88.0404 5.31 239 C00099 HMDB0000056 NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N Organic acids and derivatives Lactic acid C3 H6 O3 89.0244 2.70 107689 C00186 HMDB0000190 C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N Organic acids and derivatives Valeric acid C5 H10 O2 101.0608 1.05 7991 C00803 HMDB0000892 CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N Lipids and lipid-like molecules Malonic acid C3 H4 O4 103.0037 3.98 867 C04025 HMDB0000691 OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N Organic acids and derivatives 3-Hydroxybutyric acid C4 H8 O3 103.0401 2.08 92135 C01089 HMDB0000011 C[C@@H](O)CC(O)=O WHBMMWSBFZVSSR-GSVOUGTGSA-N Organic acids and derivatives Uracil C4 H4 N2 O2 111.0200 6.42 1174 C00106 HMDB0000300 O=C1NC=CC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N Organoheterocyclic compounds Glutaric anhydride C5 H6 O3 113.0245 3.66 HMDB0252815 O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N Organoheterocyclic compounds Fumaric acid C4 H4 O4 115.0037 4.05 444972 C00122 HMDB0000134 OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N Organic acids and derivatives 5-Aminovaleric acid C5 H11 N O2 116.0717 2.97 138 C00431 HMDB0003355 NCCCCC(O)=O JJMDCOVWQOJGCB-UHFFFAOYSA-N Organic acids and derivatives Threonine C4 H9 N O3 118.0510 4.10 6288 C00188 HMDB0000167 C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N Organic acids and derivatives Taurine C2 H7 N O3 S 124.0074 4.36 1123 C00245 HMDB0000251 NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N Organic acids and derivatives 4-Oxoproline C5 H7 N O3 128.0354 5.27 413589 HMDB0246561 OC(=O)C1CC(=O)CN1 HFXAFXVXPMUQCQ-UHFFFAOYSA-N Organic acids and derivatives DL-β-Leucine C6 H13 N O2 130.0874 2.22 6106 C00123 HMDB0000687 CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N Organic acids and derivatives Asparagine C4 H8 N2 O3 131.0462 4.59 6267 C00152 HMDB0000168 N[C@@H](CC(N)=O)C(O)=O DCXYFEDJOCDNAF-REOHCLBHSA-N Organic acids and derivatives Malic acid C4 H6 O5 133.0143 6.17 222656 C00149 HMDB0000156 O[C@@H](CC(O)=O)C(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N Organic acids and derivatives Adenine C5 H5 N5 134.0472 1.10 190 C00147 HMDB0000034 NC1=C2NC=NC2=NC=N1 GFFGJBXGBJISGV-UHFFFAOYSA-N Organoheterocyclic compounds Hypoxanthine C5 H4 N4 O 135.0313 3.50 790 C00262 HMDB0000157 OC1=NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N Organoheterocyclic compounds Xanthine C5 H4 N4 O2 151.0262 1.70 1188 C00385 HMDB0000292 O=C1NC2=C(NC=N2)C(=O)N1 LRFVTYWOQMYALW-UHFFFAOYSA-N Organoheterocyclic compounds Glycolic acid C2 H4 O3 151.0262 3.50 757 C03547 HMDB0000115 OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N Organic acids and derivatives 1-Chlorobenzotriazole C6 H4 Cl N3 152.0023 2.56 75771 HMDB0243899 ON1N=NC2=CC=CC=C12 ASOKPJOREAFHNY-UHFFFAOYSA-N Organoheterocyclic compounds Glycerol 3-phosphate C3 H9 O6 P 152.9959 4.59 439162 C00093 HMDB0000126 OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N Lipids and lipid-like molecules Nonanoic acid C9 H18 O2 157.1234 0.47 8158 C01601 HMDB0000847 CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N Lipids and lipid-like molecules L-Phenylalanine C9 H11 N O2 164.0717 2.11 6140 C00079 HMDB0000159 N[C@@H](CC1=CC=CC=C1)C(O)=O COLNVLDHVKWLRT-QMMMGPOBSA-N Organic acids and derivatives 7-Methylxanthine C6 H6 N4 O2 165.0404 3.97 68374 C16353 HMDB0001991 CN1C=NC2=C1C(=O)NC(=O)N2 PFWLFWPASULGAN-UHFFFAOYSA-N Organoheterocyclic compounds (2R)-2,3-Dihydroxypropanoic acid C3 H6 O4 165.0405 4.07 439194 C00258 HMDB0000139 OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N Organic oxygen compounds 4-Phenolsulfonic acid C6 H6 O4 S 172.9914 0.51 6101 C06677 HMDB0059933 CC1=CC=C(C=C1)S(O)(=O)=O JOXIMZWYDAKGHI-UHFFFAOYSA-N Benzenoids N-α-Acetyl-L-asparagine C6 H10 N2 O4 173.0568 3.50 99715 HMDB0006028 CC(=O)N[C@@H](CC(N)=O)C(O)=O HXFOXFJUNFFYMO-BYPYZUCNSA-N Organic acids and derivatives Theophylline C7 H8 N4 O2 179.0561 3.92 2153 C07130 HMDB0001889 CN1C2=C(NC=N2)C(=O)N(C)C1=O ZFXYFBGIUFBOJW-UHFFFAOYSA-N Organoheterocyclic compounds L-threo-3-Phenylserine C9 H11 N O3 180.0666 3.23 12314153 HMDB0002184 N[C@@H](C(O)C1=CC=CC=C1)C(O)=O VHVGNTVUSQUXPS-JAMMHHFISA-N Organic acids and derivatives L-Iditol C6 H14 O6 181.0718 3.21 5460044 C01507 HMDB0011632 OC[C@H](O)[C@@H](O)[C@H](O)[C@@H](O)CO FBPFZTCFMRRESA-UNTFVMJOSA-N Organic oxygen compounds 4-Pyridoxic acid C8 H9 N O4 182.0459 0.74 6723 C00847 HMDB0000017 CC1=NC=C(CO)C(C(O)=O)=C1O HXACOUQIXZGNBF-UHFFFAOYSA-N Organoheterocyclic compounds 6-Phosphogluconic acid C6 H13 O10 P 275.0174 6.54 91493 C00345 HMDB0001316 O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O BIRSGZKFKXLSJQ-SQOUGZDYSA-N Organic oxygen compounds Salicylic acid C7 H6 O3 275.0540 3.28 10253 C07588 HMDB0000840 OC(=O)CNC(=O)C1=C(O)C=CC=C1 ONJSZLXSECQROL-UHFFFAOYSA-N Benzenoids Guanosine C10 H13 N5 O5 282.0844 2.59 6802 C00387 HMDB0000133 NC1=NC2=C(N=CN2[C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O)C(=O)N1 NYHBQMYGNKIUIF-UUOKFMHZSA-N Nucleosides, nucleotides, and analogues 4-Dodecylbenzenesulfonic acid C18 H30 O3 S 325.1844 0.37 8485 HMDB0059915 CCCCCCCCCCCCC1=CC=C(C=C1)S(O)(=O)=O KWXICGTUELOLSQ-UHFFFAOYSA-N Benzenoids Lithocholic Acid C24 H40 O3 375.2899 0.44 164853 C17658 HMDB0000717 [H][C@@]12CC[C@H]([C@H](C)CCC(O)=O)[C@@]1(C)CC[C@@]1([H])[C@@]2([H])CC[C@]2([H])C[C@@H](O)CC[C@]12C SMEROWZSTRWXGI-WFVDQZAMSA-N Lipids and lipid-like molecules Uridine 5'-diphosphoglucuronic acid C15 H22 N2 O18 P2 579.0271 6.68 17473 C00167 HMDB0000935 O[C@@H]1[C@@H](COP(O)(=O)OP(O)(=O)O[C@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C(O)=O)O[C@H]([C@@H]1O)N1C=CC(=O)NC1=O HDYANYHVCAPMJV-LXQIFKJMSA-N Organoheterocyclic compounds METABOLITES_END #END