Return to study ST002516 main page

MB Sample ID: SA253429

Local Sample ID:AB8_10_TP8_1
Subject ID:SU002616
Subject Type:Bacteria
Subject Species:Eggerthella lenta
Taxonomy ID:84112
Genotype Strain:DSM 2243, Valencia, AB8n2

Select appropriate tab below to view additional metadata details:


Subject:

Subject ID:SU002616
Subject Type:Bacteria
Subject Species:Eggerthella lenta
Taxonomy ID:84112
Genotype Strain:DSM 2243, Valencia, AB8n2

Factors:

Local Sample IDMB Sample IDFactor Level IDLevel ValueFactor Name
AB8_10_TP8_1SA253429FL032404AB8n2Strain2
AB8_10_TP8_1SA253429FL03240410AcetateGroup
AB8_10_TP8_1SA253429FL032404TP8TimePoint
AB8_10_TP8_1SA253429FL03240464Time

Collection:

Collection ID:CO002609
Collection Summary:Time course experiments were conducted in tubes in the anaerobic chamber in a 37°C incubator. For all metabolomics experiments, three independent culture replicates were included for each condition, with an equal number of uninoculated control tubes. Starter cultures and inocula were prepared as described above for growth assays. 5mLs of defined media was added to VWR glass culture tubes (53283-800) with screw caps. The PBS-washed inoculum was added to culture tubes to obtain an approximate starting OD600 of 0.001. A preliminary growth assay was conducted to define time points spanning the exponential growth phase in the tested conditions. At each time point, OD600 measurements of all inoculated tubes were first measured using a Hach DR1900 spectrophotometer, with a paired control tube to normalize for the background. 100 μL from each tube were then transferred into a 96-well microplate, which was sealed and removed from the anaerobic chamber. Plates were centrifuged at 1,928 rcf at 4°C for 8 minutes, after which supernatants were collected into fresh polypropylene tubes or plates, sealed, and flash-frozen in liquid nitrogen. Two time course experiments were carried out with stable isotope-labeled substrates. Experimental groups included conditions in which sodium acetate in the defined media was replaced with 13C2 labeled sodium acetate (Sigma-Aldrich 282014), along with a matched experimental group with the same concentration of unlabeled substrate.
Sample Type:Bacterial culture supernatant
Collection Frequency:at time points specified in study design table over 64 hours (full growth phase)
Storage Conditions:-80℃

Treatment:

Treatment ID:TR002628
Treatment Summary:For growth and metabolomics experiments, glycerol stocks of the 3 E. lenta strains were first streaked on BHI+ agar plates and incubated at 37°C for 2-3 days. Individual colonies were inoculated into 3-4 mL liquid BHI+ and incubated at 37°C for 40-48 hours, or until approximately early stationary phase. Culture optical density (600 nm wavelength absorbance, OD600) was measured using a Hach DR1900 spectrophotometer. 1 mL samples of BHI starter cultures were then centrifuged at 1,568 rcf for 4 minutes in a microcentrifuge (ThermoScientific mySpin 12) in the anaerobic chamber and resuspended in 1 mL sterile phosphate-buffered saline (PBS). The resulting suspension was vortexed and diluted to an approximate OD600 of 0.1, and used as inoculum into defined experimental conditions. Varying media conditions were prepared separately and all allowed to fully reduce in the anaerobic chamber prior to inoculation.

Sample Preparation:

Sampleprep ID:SP002622
Sampleprep Summary:Bacterial culture supernatant and sterile media, used in culture, were thawed on wet ice. Once thawed, samples were homogenized by inversion five times. Extracellular culture supernatant samples were prepared as follows: 20 μL of culture supernatant were extracted using 80 μL of a chilled extraction solvent at −20°C (1:1 acetonitrile:methanol, 5% water containing stable isotope-labeled internal standards). Samples were homogenized via pipette action, incubated for 1 hour at −20°C, centrifuged at 4°C at 6000 rcf for 5 min. The supernatant was transferred to a new plate and immediately sealed and kept at 4°C prior to prompt analysis via LC-MS/MS.

Combined analysis:

Analysis ID AN004143 AN004144
Analysis type MS MS
Chromatography type HILIC HILIC
Chromatography system Thermo Vanquish Thermo Vanquish
Column Waters ACQUITY UPLC BEH Amide (150 x 2.1mm,1.7um) Waters ACQUITY UPLC BEH Amide (150 x 2.1mm,1.7um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap
Ion Mode POSITIVE NEGATIVE
Units relative ion counts relative ion counts

Chromatography:

Chromatography ID:CH003068
Chromatography Summary:Samples, sterile media, pools, and blanks were promptly added to a Thermo Vanquish Autosampler at 4°C in a Vanquish UHPLC (Thermo Fisher Scientific, Waltham, MA). Chromatographic separation was performed using an ACQUITY Bridged Ethylene Hybrid (BEH) Amide column 2.1 x 150 mm, 1.7-micron particle size, (Waters Corp. Milford, MA), using chromatographic conditions published elsewhere (HILIC method described in the Supplementary Methods of doi.org/10.1038/s41586-021-03707-9).
Instrument Name:Thermo Vanquish
Column Name:Waters ACQUITY UPLC BEH Amide (150 x 2.1mm,1.7um)
Column Temperature:40
Flow Gradient:The gradient profile was held at 100% B for 2 minutes, from 100% B to 70% B in 5 minutes, holding at 70% B for 0.7 minute, from 70% B to 40% B for 1.3 minutes, holding at 40% B for 0.5 minutes, from 40% B to 30% B for 0.75 minutes, before returning to 100% B for 2.5 minutes and holding at 100% B for 4 minutes.
Flow Rate:400 μL per minute
Solvent A:100% water; 0.125% formic acid; 10 mM ammonium formate, pH 3
Solvent B:95% acetonitrile/5% water; 0.125% formic acid; 10 mM ammonium formate
Chromatography Type:HILIC

MS:

MS ID:MS003890
Analysis ID:AN004143
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Full MS-ddMS2 data was collected, an inclusion list was used to prioritize MS2 selection of metabolites from our in-house ‘local’ library, when additional scan bandwidth was available MS2 was collected in a data-dependent manner. Mass range was 60-900 mz, resolution was 60k (MS1) and 15k (MS2), centroid data was collected, loop count was 4, isolation window was 1.5 Da. In SIRM samples, deuterated internal standards were replaced with CUDA and Val-Tyr-Val to enable untargeted enrichment analysis. LC-MS/MS analysis conditions for SIRM metabolomics were identical to those used for standard untargeted metabolomics. Intra- and extracellular untargeted data generated from SIRM experiments was analyzed separately using Compound Discoverer version 3.3 (Thermo Scientific, Bremen, Germany). Samples treated with labeled compounds were always paired with matched samples treated with unlabeled compounds in order to correct for naturally occurring isotope abundances. Unlabeled samples were used for compound detection and formula assignment via isotope pattern-based prediction, spectral library matches, or mass lists matches. The isotope patterns and formulas from the sample files then served as a reference for the detection of potential isotopologues per compound in the labeled sample type. A specification of the full Compound Discoverer workflow is available at https://github.com/turnbaughlab/2022_Noecker_ElentaMetabolism.
Ion Mode:POSITIVE
  
MS ID:MS003891
Analysis ID:AN004144
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Full MS-ddMS2 data was collected, an inclusion list was used to prioritize MS2 selection of metabolites from our in-house ‘local’ library, when additional scan bandwidth was available MS2 was collected in a data-dependent manner. Mass range was 60-900 mz, resolution was 60k (MS1) and 15k (MS2), centroid data was collected, loop count was 4, isolation window was 1.5 Da. In SIRM samples, deuterated internal standards were replaced with CUDA and Val-Tyr-Val to enable untargeted enrichment analysis. LC-MS/MS analysis conditions for SIRM metabolomics were identical to those used for standard untargeted metabolomics. Intra- and extracellular untargeted data generated from SIRM experiments was analyzed separately using Compound Discoverer version 3.3 (Thermo Scientific, Bremen, Germany). Samples treated with labeled compounds were always paired with matched samples treated with unlabeled compounds in order to correct for naturally occurring isotope abundances. Unlabeled samples were used for compound detection and formula assignment via isotope pattern-based prediction, spectral library matches, or mass lists matches. The isotope patterns and formulas from the sample files then served as a reference for the detection of potential isotopologues per compound in the labeled sample type. A specification of the full Compound Discoverer workflow is available at https://github.com/turnbaughlab/2022_Noecker_ElentaMetabolism.
Ion Mode:NEGATIVE
  logo