Summary of Study ST001838

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001160. The data can be accessed directly via it's Project DOI: 10.21228/M8RT34 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001838
Study TitleReversing Epigenetic Gene Silencing to Overcome Immune Evasion in CNS Malignancies
Study SummaryGlioblastoma is an aggressive brain malignancy with a dismal prognosis. With emerging evidence that disproves the immune privileged environment in the brain, there is much interest in examining various immunotherapy strategies to treat these incurable cancers. Unfortunately, to date, clinical studies investigating immunotherapy regimens have not provided much evidence of efficacy, leading to questions about the suitability of immunotherapy strategies for these tumors. Inadequate inherent populations of lymphocytes in tumor (TILs) and limited trafficking of systemic circulating T cells into the central nervous system (CNS) likely contribute to the poor response to immunotherapy treatment for primary CNS cancers. This paucity of TILs is in concert with the finding of epigenetic silencing of genes that promote immune cell movement (chemotaxis) to the tumor. In this study we evaluated the ability of GSK126, a blood-brain barrier permeable small molecule inhibitor of EZH2, to reverse the epigenetic silencing of chemokines like CXCL9 and CXCL10. When combined with anti-PD-1 treatment, these IFN driven chemokines promote T cell infiltration, resulting in decreased tumor growth and enhanced survival in immunocompetent murine sub-cutaneous and intracranial tumor syngeneic models of GBM. Examination of the tumor micro-environment revealed that the decrease in tumor growth in the mice treated with the drug combination was accompanied by increased tumor CD8 T cell infiltration along with higher IFN expression. Additionally, a significant increase in CXCR3+ T cells in the draining lymph nodes was also found. Taken together, our data suggests that in glioblastoma, epigenetic modulation using GSK126 could improve current immunotherapy strategies by reversing the epigenetic changes that enable immune cell evasion leading to enhanced immune cell trafficking to the tumor.
Institute
National Cancer Institute
DepartmentNeuro-Oncology Branch
LaboratoryCancer Metabolism
Last NameDowdy
First NameTyrone
Address37 convent dr, Bldg 37 rm 1142
Emailtyrone.dowdy@nih.gov
Phone2407607066
Submit Date2021-06-11
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailLC-MS
Release Date2021-06-30
Release Version1
Tyrone Dowdy Tyrone Dowdy
https://dx.doi.org/10.21228/M8RT34
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002980
Analysis type MS
Chromatography type HILIC
Chromatography system Agilent 1290 Infinity II
Column Agilent AdvanceBio Glycan Map 2.1 x 100 mm 2.7µm column
MS Type ESI
MS instrument type QTOF
MS instrument name Agilent 6545
Ion Mode POSITIVE
Units ng
  logo