Summary of Study ST002921

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001815. The data can be accessed directly via it's Project DOI: 10.21228/M83Q7Q This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002921
Study TitleMetabolomic Characteristics of Nontuberculous Mycobacterial Pulmonary Disease
Study SummaryWhile the burden of nontuberculous mycobacterial pulmonary disease (NTM-PD) continues to increase, knowledge of biomarkers for NTM-PD remains insufficient. Furthermore, metabolic changes in NTM-PD have not yet been investigated. The identification of specific metabolites and associated metabolic pathways unique to NTM-PD will provide a deeper understanding of its pathogenesis. In this study, we aimed to discover specific metabolic biomarkers for NTM-PD using a metabolomics approach. In this study, we underwent untargeted metabolomic profiling using a liquid chromatography system coupled with the quadrupole-orbitrap mass spectrometer to analyze serum samples from patients with NTM-PD (n = 50), patients with non-NTM bronchiectasis (n = 50), and HC subjects (n = 60). To validate the results, an additional 86 serum samples for each group were analyzed using the same analytical methods. We identified several NTM-PD significant metabolites that differentiate patients with NTM-PD from healthy individuals. The machine learning-based classification model demonstrated the proficiency of the selected metabolic features in distinguishing between patients with NTM-PD and healthy individuals. These findings may contribute to a better understanding of the pathogenesis of NTM-PD and provide insights for the development of novel treatment approaches.
Institute
Seoul National University College of Medicine and Hospital
Last NameJungeun
First NameKim
Address101 Daehak-ro, Jongno-gu, Seoul, Korea
Emailjeunk@snu.ac.kr
Phone+821026965910
Submit Date2023-10-05
Num Groups3
Total Subjects418
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-01-31
Release Version1
Kim Jungeun Kim Jungeun
https://dx.doi.org/10.21228/M83Q7Q
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004791
Analysis type MS
Chromatography type Reversed phase
Chromatography system Thermo Dionex Ultimate 3000
Column Waters ACQUITY UPLC HSS T3 (100 x 2.1mm,1.8um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Plus Orbitrap
Ion Mode POSITIVE
Units Peak area
  logo