Summary of Study ST002983

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001858. The data can be accessed directly via it's Project DOI: 10.21228/M8JM83 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002983
Study TitleDeciphering the metabolic heterogeneity of hematopoietic stem cells with single-cell resolution
Study SummaryMetabolic status is crucial for stem cell functions; however, the metabolic heterogeneity of endogenous stem cells has never been directly assessed. Here, we develop a platform for high-throughput single-cell metabolomics (hi-scMet) of hematopoietic stem cells (HSCs). By combining flow cytometric isolation and nanoparticle-enhanced laser desorption/ionization mass spectrometry, we routinely detected >100 features from single cells. We mapped the single-cell metabolomes of all hematopoietic cell populations, and HSC subpopulations with different division times, detecting 33 features whose levels exhibited trending changes during HSC proliferation. We found progressive activation of oxidative pentose phosphate pathway (OxiPPP) from dormant to active HSCs. Genetic or pharmacological interference with OxiPPP increased reactive oxygen species level in HSCs, reducing HSC self-renewal upon oxidative stress. Together, our work uncovers the metabolic dynamics during HSC proliferation, reveals a role of OxiPPP for HSC activation, and illustrates the utility of hi-scMet in dissecting metabolic heterogeneity of immunophenotypically defined cell populations.
Institute
Shanghai Jiao Tong University
Last NameCAO
First NameJING
Address1954 Huashan Road, Shanghai, Shanghai, 200030, China
Emailcaojing1@sjtu.edu.cn
Phone+8615201957271
Submit Date2023-11-21
Raw Data AvailableYes
Raw Data File Type(s).txt
Analysis Type DetailMALDI
Release Date2023-11-28
Release Version1
JING CAO JING CAO
https://dx.doi.org/10.21228/M8JM83
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004902
Analysis type MS
Chromatography type None (Direct infusion)
Chromatography system none
Column none
MS Type MALDI
MS instrument type MALDI-TOF-MS
MS instrument name Bruker Autoflex MALDI-TOF (/TOF)-MS
Ion Mode POSITIVE
Units intensity

Chromatography:

Chromatography ID:CH003697
Chromatography Summary:None
Instrument Name:none
Column Name:none
Column Temperature:none
Flow Gradient:none
Flow Rate:none
Solvent A:none
Solvent B:none
Chromatography Type:None (Direct infusion)
  logo