Return to study ST001357 main page

MB Sample ID: SA098758

Local Sample ID:mtab_alm_UW_072718_103
Subject ID:SU001431
Subject Type:Other
Subject Species:Wastewater

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002260
Analysis type MS
Chromatography type Reversed phase
Chromatography system Thermo Vanquish
Column Waters Acquity BEH HSS T3 (100 x 2.1mm,1.8um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Fusion Orbitrap
Ion Mode NEGATIVE
Units peak area

MS:

MS ID:MS002104
Analysis ID:AN002260
Instrument Name:Thermo Fusion Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data was collected in negative ionization mode with data-dependent secondary mass spectra (MS/MS) obtained via high-energy collisional dissociation (HCD, mass resolution 15,000 and collision energy of 35 arbitrary units, automatic gain control, AGT, of 5.0e4 and max injection time, IT, of 22 ms). The full MS resolution was 120,000 at 200 mz with an AGT target of 4.0e5 and a maximum IT of 50 ms. The quadrupole isolation width was set at 1.0 m/z. ESI was carried out at a source voltage of 2600 kV for negative ion mode with a capillary temperature of 350 ࿁C, vaporizer temperature of 400 ࿁C, and sheath, auxiliary, and sweep gases at 55, 20, and 1 arbitrary units, respectively. Python 3.6.5 with scikit-learn version 0.19.1 as well as R 3.5.1 were used for processing and analysis. Following data acquisition, all data files were converted to an open source file format (.mzML) via a custom wrapper (msconvert_ee.py) of the program MSConvert in the ProteoWizard suite. All files were then processed as a single batch with a custom python wrapper script (full_ipo_xcms.py) of both IPO and then subsequent XCMS processing. The parameters for XCMS were: CentWave (ppm=10, peakwidth=(5,15), snthresh=(100), prefilter=(4,10000), mzCenterFun=wMean, integrate=2, mzdiff=-0.005, noise=50,000), ObiwarpParam (binsize=0.1, response=1, distFun=cor_opt, gapInit=0.3, gapExtend=2.4, factorDiag=2, factorGap=1), PeakDensityParam (bw=10, minFraction=0.05, minSamples=1, binSize=0.002, maxFeatures=50), mode (negative). In addition to aligning and extracting peak information, this program automatically extracted all MS/MS spectra and saved as a separate .mgf file for use in the metabolite naming pipeline. Mentioned python scripts can be found at: https://github.com/ethanev/Metabolite_lookup
Ion Mode:NEGATIVE
  logo