Summary of project PR000940

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000940. The data can be accessed directly via it's Project DOI: 10.21228/M86396 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR000940
Project DOI:doi: 10.21228/M86396
Project Title:Untargeted Metabolomics for fruit juice authentication
Project Summary:Introduction LC-MS based untargeted metabolomics are the main untargeted methods used for juice metabolomics to solve the authentication problem faced in fruit juice industry. Objectives To evaluate the performances of different untargeted metabolomics methods on fruit juices metabolomics and authentication, orange and apple fruit juices were selected for this study. Methods IDA-MS and SWATH-MS based on UHPLC-QTOF were used for the metabolomics and authenticity determination of apple and orange juices, including the lab-made samples of oranges (Citrus sinensis Osb.) from Jiangxi Province, apples (Malus domestica Borkh) from Shandong Province, and different brands of commercial orange and apple juice samples from markets. Results IDA-MS and SWATH-MS could both acquire numerous MS1 features and MS2 information of juice components, while SWATH-MS excels at the acquisition rate of MS2. Distinctive separation between authentic orange juice and not authentic orange juice could be seen from principal component analysis and hierarchical clustering analysis based on both IDA-MS and SWATH-MS. After analysis of variance, fold change analysis and orthogonal projection to latent structures discriminant mode, 53 and 46 potential markers were defined by IDA-MS and SWATH-MS (with 77.4% and 100% MS2 acquisition rate) separately. Subsequently, these potential markers were putatively annotated using general chemical databases with 6 more annotated by SWATH-MS. Furthermore, 7 of the potential markers, l-asparagine, umbelliferone, glucosamine, phlorin, epicatechin, phytosphingosine and chlorogenic acid, were identified with standards. For the consideration of model simplicity, two determined makers (umbelliferone and chlorogenic acid) were selected to construct the DD-SIMCA model in commercial samples because of their good correlation with apple adulteration proportion, and the sensitivity and specificity of the model were 100% and 95%. Conclusion SWATH-MS excels at the MS2 acquisition of juice components and potential markers. This study provides an overall performance comparison between IDA-MS and SWATH-MS, and guidance for the method selection on fruit juice metabolomics and juice authenticity determination. Two of the potential markers determined, umbelliferone and chlorogenic acid, could be used as apple juice indicators in orange juice.
Institute:Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences
Last Name:Xu
First Name:Lei
Address:No.12 Zhongguancun South St.,Haidian District Beijing P.R.China
Email:xulei@cau.edu.cn
Phone:+8618811583506

Summary of all studies in project PR000940

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST001374 Untargeted Metabolomics for fruit juice authentication Malus domestica;Citrus sinensis Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences MS* 2020-05-22 1 597 Uploaded data (22.5G)*
  logo