Summary of Study ST002792

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001740. The data can be accessed directly via it's Project DOI: 10.21228/M8SQ7X This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002792
Study TitleChemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria
Study SummaryAll current treatments for malaria are threatened by drug resistance, and new drug candidates that act on novel pathways are urgently needed. Here, we describe MIPS2673, a selective inhibitor of the Plasmodium M1 alanyl metalloaminopeptidase, which displays excellent in vitro antimalarial activity with no significant host cell toxicity. Biochemical assays revealed potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (Pv-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases. Orthogonal chemoproteomic methods based on thermal stability and limited proteolysis reproducibly identified PfA-M1 as the sole target of MIPS2673 in parasites from approximately 2,000 detected proteins. Furthermore, the limited proteolysis approach enabled estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Functional investigation by untargeted metabolomics further demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our proteomics and metabolomics target deconvolution strategies provided unbiased confirmation of the on-target activity of a PfA-M1 inhibitor, and validated selective inhibition of this enzyme as a promising multi-stage and cross-species antimalarial strategy.
Institute
Monash University
Last NameSiddiqui
First NameGhizal
Address381 Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
Emailghizal.siddiqui@monash.edu
Phone99039282
Submit Date2023-07-23
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-08-10
Release Version1
Ghizal Siddiqui Ghizal Siddiqui
https://dx.doi.org/10.21228/M8SQ7X
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001740
Project DOI:doi: 10.21228/M8SQ7X
Project Title:Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria
Project Summary:All current treatments for malaria are threatened by drug resistance, and new drug candidates that act on novel pathways are urgently needed. Here, we describe MIPS2673, a selective inhibitor of the Plasmodium M1 alanyl metalloaminopeptidase, which displays excellent in vitro antimalarial activity with no significant host cell toxicity. Biochemical assays revealed potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (Pv-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases. Orthogonal chemoproteomic methods based on thermal stability and limited proteolysis reproducibly identified PfA-M1 as the sole target of MIPS2673 in parasites from approximately 2,000 detected proteins. Furthermore, the limited proteolysis approach enabled estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Functional investigation by untargeted metabolomics further demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our proteomics and metabolomics target deconvolution strategies provided unbiased confirmation of the on-target activity of a PfA-M1 inhibitor, and validated selective inhibition of this enzyme as a promising multi-stage and cross-species antimalarial strategy.
Institute:Monash University
Last Name:Siddiqui
First Name:Ghizal
Address:381 Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
Email:ghizal.siddiqui@monash.edu
Phone:99039282

Subject:

Subject ID:SU002899
Subject Type:Cultured cells
Subject Species:Plasmodium falciparum
Taxonomy ID:5833
Species Group:Unicellular parasites

Factors:

Subject type: Cultured cells; Subject species: Plasmodium falciparum (Factor headings shown in green)

mb_sample_id local_sample_id treatment
SA299546DMSO_iRBC_p_6DMSO
SA299547DMSO_iRBC_p_5DMSO
SA299548DMSO_iRBC_p_7DMSO
SA299549DMSO_iRBC_p_8DMSO
SA299550DMSO_iRBC_p_9DMSO
SA299551DMSO_iRBC_p_4DMSO
SA299552DMSO_iRBC_p_3DMSO
SA299553DMSO_iRBC_p_2DMSO
SA299554DMSO_iRBC_p_1DMSO
SA29955573_irbcs_p_2MIPS2673
SA29955673_irbcs_p_3MIPS2673
SA29955773_irbcs_p_4MIPS2673
SA29955873_irbcs_p_1MIPS2673
Showing results 1 to 13 of 13

Collection:

Collection ID:CO002892
Collection Summary:Pf3D7 cultures underwent double sorbitol synchronization 14 h apart, followed by further incubation for 28-42 h to achieve the desired trophozoite stage (28 hpi) at 6% parasitaemia and 2% hematocrit. Infected RBCs (2x108) were treated with 10x the EC50 of MIPS2673 for 1 h, after which metabolites were extracted. During the drug incubation period parasites were at 37°C under a gas atmosphere of 94% N2, 5% CO2 and 1% O2. All samples were centrifuged at 650 g for 3 min, the supernatant was removed, and the pellet washed in 500 µL of ice-cold PBS. Samples were again centrifuged at 650 g for 3 min and pellets were resuspended in 150 µL of ice-cold extraction buffer (100% methanol) and quickly resuspended. The samples were then incubated on a vortex mixer for 1 h at 4°C before being centrifuged at 17,000 g for 10 min; from this 100 µL of supernatant was collected and stored at -80°C until analysis. For each sample, another 10 µL was collected and pooled, to serve as a quality control (QC) sample.
Sample Type:Blood (whole)

Treatment:

Treatment ID:TR002908
Treatment Summary:Pf3D7 cultures underwent double sorbitol synchronization 14 h apart, followed by further incubation for 28-42 h to achieve the desired trophozoite stage (28 hpi) at 6% parasitaemia and 2% hematocrit. Infected RBCs (2x108) were treated with 10x the EC50 of MIPS2673 for 1 h, after which metabolites were extracted. During the drug incubation period parasites were at 37°C under a gas atmosphere of 94% N2, 5% CO2 and 1% O2. All samples were centrifuged at 650 g for 3 min, the supernatant was removed, and the pellet washed in 500 µL of ice-cold PBS. Samples were again centrifuged at 650 g for 3 min and pellets were resuspended in 150 µL of ice-cold extraction buffer (100% methanol) and quickly resuspended. The samples were then incubated on a vortex mixer for 1 h at 4°C before being centrifuged at 17,000 g for 10 min; from this 100 µL of supernatant was collected and stored at -80°C until analysis. For each sample, another 10 µL was collected and pooled, to serve as a quality control (QC) sample.

Sample Preparation:

Sampleprep ID:SP002905
Sampleprep Summary:Pf3D7 cultures underwent double sorbitol synchronization 14 h apart, followed by further incubation for 28-42 h to achieve the desired trophozoite stage (28 hpi) at 6% parasitaemia and 2% hematocrit. Infected RBCs (2x108) were treated with 10x the EC50 of MIPS2673 for 1 h, after which metabolites were extracted. During the drug incubation period parasites were at 37°C under a gas atmosphere of 94% N2, 5% CO2 and 1% O2. All samples were centrifuged at 650 g for 3 min, the supernatant was removed, and the pellet washed in 500 µL of ice-cold PBS. Samples were again centrifuged at 650 g for 3 min and pellets were resuspended in 150 µL of ice-cold extraction buffer (100% methanol) and quickly resuspended. The samples were then incubated on a vortex mixer for 1 h at 4°C before being centrifuged at 17,000 g for 10 min; from this 100 µL of supernatant was collected and stored at -80°C until analysis. For each sample, another 10 µL was collected and pooled, to serve as a quality control (QC) sample.

Chromatography:

Chromatography ID:CH003412
Instrument Name:Thermo Dionex Ultimate 3000 RS
Column Name:ZIC-pHILIC (150 x 4.6mm,5um) equipped with a guard (SeQuant,Merck)
Column Temperature:25
Flow Gradient:0% B to 50% B over 15 min, then to 5% B at 18 min until 21 min, increasing to 80% B at 24 min until 32 min.
Flow Rate:0.3 ml/min
Solvent A:100% water; 20 mM ammonium carbonate
Solvent B:100% acetonitrile
Chromatography Type:HILIC

Analysis:

Analysis ID:AN004542
Analysis Type:MS
Chromatography ID:CH003412
Num Factors:2
Num Metabolites:503
Rt Units:Minutes
Units:peak height
  
Analysis ID:AN004543
Analysis Type:MS
Chromatography ID:CH003412
Num Factors:2
Num Metabolites:351
Rt Units:Minutes
Units:peak height
  logo