Summary of Study ST003325

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001844. The data can be accessed directly via it's Project DOI: 10.21228/M8C145 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003325
Study TitleComprehensive Untargeted LC-MS Metabolomics Analysis of STS Knockout iPSCs(Supernatant)
Study SummaryHuman induced pluripotent stem cells (hIPSCs) are a key tool for biomedical research. In this study, human induced pluripotent stem cells of the KOLF2.2J lineage were generated with null allele mutation for STS. Three techniques were used for the generation of these KOs and represented in the study metadata as: KO – total knockout / gene deletion, PTC – premature stop codon, and CE – critical exon deletion. These cell lines were cultured on media with and without DHEA-S and were differentiated into primitive syncytium. Biochemical phenotyping, i.e., untargeted metabolomics and lipidomics profiling, was performed on both differentiated and undifferentiated cells using a Thermo Scientific Q Exactive HF-X Mass Spectrometer coupled to a Thermo Vanquish Duo UHPLC Systems, equipped with an HES-II ionization source, using both positive andnegative ionization modes. Additionally, in this dataset, chemoselective derivatization was also performed on cell pellets and supernatant using Dansyl Hydrazine and Dansyl Chloride (DnHz and DnCl) using an in house method in which most samples are derivatized using unlabeled reagent while a subset of pooled samples are derivatized using a roughly 50:50 mixture of labelled (m+13C2) and unlabeled reagent. The exact ratios can be inferred from our analysis of the reagent mixture using either direct injection or LC-MS. These samples were run at a different resolution than the rest of the samples and thus not included in the uploaded feature tables. This dataset, combined with the other -omics level data generated through MorPhiC on these cell lines, provides a molecular foundation for understanding the implications of specific gene deletions in these cell lines and their derivative cell types (e.g., primitive syncytium). This study includes data generated from the cell pellets of the above cell lines. This study was funded, in part, through UM1HG012651 which established the JAX MorPhiC Center, a MorPhiC Phase 1 Data Production Research and Development Center at the Jackson Laboratory for Genomic Medicine.
Institute
Jackson Laboratory for Genomic Medicine
Last NameChi
First NameYuanye
Address10 Discovery Dr, Farmington, CT
Emailyuanye.chi@jax.org
Phone3395456866
Submit Date2024-07-09
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2025-05-14
Release Version1
Yuanye Chi Yuanye Chi
https://dx.doi.org/10.21228/M8C145
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001844
Project DOI:doi: 10.21228/M8C145
Project Title:Molecular Phenotypes of Null Alleles in Cells
Project Summary:The 2020 NHGRI Strategic Vision laid out a set of “bold predictions for human genomics by 2030” including elucidating the biological function(s) of each human gene. The Molecular Phenotypes of Null Alleles in Cells (MorPhiC) seeks to address this element of the strategic vision. Through the comprehensive generation of null alleles for every human gene and then cataloging the resulting molecular and cellular phenotypes, the mechanisms that relate gene function to observed phenotypes can be determined. Furthermore, the resulting catalog of knockouts and phenotypes will be made available for broader use by the biomedical community. Although multiple approaches can be leveraged to measure molecular and cellular phenotypes resulting from gene knockouts, metabolomics and lipidomics (i.e., biochemical phenotyping) provides an avenue to understand the link between gene function and phenotypes at a molecular level. This project consists of studies performed to biochemical phenotype of cell lines and other samples generated as part of MorPhiC. Resources: 1. https://www.nih.gov/news-events/news-releases/nih-initiative-systematically-investigate-establish-function-every-human-gene 2. https://www.genome.gov/research-funding/Funded-Programs-Projects/Molecular-Phenotypes-of-Null-Alleles-in-Cells
Institute:The Jackson Laboratory for Genomic Medicine
Laboratory:Shuzhao Li Lab
Last Name:Chi
First Name:Yuanye
Address:10 Discovery Dr, Farmington, CT
Email:yuanye.chi@jax.org
Phone:3395456866

Subject:

Subject ID:SU003446
Subject Type:Cultured cells
Subject Species:Homo sapiens
Taxonomy ID:9606
Species Group:Mammals

Factors:

Subject type: Cultured cells; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id Sample source GROUP
SA360925STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_3_analyticalreplicate_2_05012024_SZ_5712C13C_Derivatized_Pool -
SA360926STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_1_analyticalreplicate_2_04252024_SZ_4512C13C_Derivatized_Pool -
SA360927STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_3_analyticalreplicate_3_05012024_SZ_10512C13C_Derivatized_Pool -
SA360928STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_1_analyticalreplicate_3_05012024_SZ_9312C13C_Derivatized_Pool -
SA360929STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_2_analyticalreplicate_3_05012024_SZ_8112C13C_Derivatized_Pool -
SA360930STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_2_analyticalreplicate_2_04252024_SZ_6912C13C_Derivatized_Pool -
SA360931STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_2_analyticalreplicate_2_05012024_SZ_6912C13C_Derivatized_Pool -
SA360932STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_2_analyticalreplicate_3_04252024_SZ_8112C13C_Derivatized_Pool -
SA360933STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_1_analyticalreplicate_1_04252024_SZ_2112C13C_Derivatized_Pool -
SA360934STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_1_analyticalreplicate_2_05012024_SZ_4512C13C_Derivatized_Pool -
SA360935STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_2_analyticalreplicate_1_05012024_SZ_3312C13C_Derivatized_Pool -
SA360936STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_1_analyticalreplicate_3_04252024_SZ_9312C13C_Derivatized_Pool -
SA360937STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_1_analyticalreplicate_1_05012024_SZ_2112C13C_Derivatized_Pool -
SA360938STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_3_analyticalreplicate_3_04252024_SZ_10512C13C_Derivatized_Pool -
SA360939STS_supernatant_Pool_QC_12C13C_DnHz_biologicalreplicate_3_analyticalreplicate_1_05012024_SZ_0812C13C_Derivatized_Pool -
SA360940STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_2_analyticalreplicate_1_04252024_SZ_3312C13C_Derivatized_Pool -
SA360941STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_3_analyticalreplicate_2_04252024_SZ_5712C13C_Derivatized_Pool -
SA360942STS_supernatant_Pool_QC_12C13C_DnCl_biologicalreplicate_3_analyticalreplicate_1_04252024_SZ_0812C13C_Derivatized_Pool -
SA360943STS_supernatant_Process_Blank_1213C_DnHz_2_05012024_SZ_11512C13C_Derivatized_Process_Blank -
SA360944STS_supernatant_Process_Blank_1213C_DnCl_2_04252024_SZ_11512C13C_Derivatized_Process_Blank -
SA360945STS_supernatant_Process_Blank_1213C_DnHz_1_05012024_SZ_0412C13C_Derivatized_Process_Blank -
SA360946STS_supernatant_Process_Blank_1213C_DnCl_1_04252024_SZ_0412C13C_Derivatized_Process_Blank -
SA360947STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_1_analyticalreplicate_2_04252024_SZ_4312C13C_Derivatized_Standards -
SA360948STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_1_analyticalreplicate_2_05012024_SZ_4312C13C_Derivatized_Standards -
SA360949STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_2_analyticalreplicate_3_05012024_SZ_7912C13C_Derivatized_Standards -
SA360950STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_3_analyticalreplicate_1_04252024_SZ_0612C13C_Derivatized_Standards -
SA360951STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_1_analyticalreplicate_3_04252024_SZ_9112C13C_Derivatized_Standards -
SA360952STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_3_analyticalreplicate_2_04252024_SZ_5512C13C_Derivatized_Standards -
SA360953STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_2_analyticalreplicate_1_05012024_SZ_3112C13C_Derivatized_Standards -
SA360954STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_3_analyticalreplicate_3_05012024_SZ_10312C13C_Derivatized_Standards -
SA360955STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_2_analyticalreplicate_3_04252024_SZ_7912C13C_Derivatized_Standards -
SA360956STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_2_analyticalreplicate_1_04252024_SZ_3112C13C_Derivatized_Standards -
SA360957STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_1_analyticalreplicate_1_05012024_SZ_1912C13C_Derivatized_Standards -
SA360958STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_1_analyticalreplicate_3_05012024_SZ_9112C13C_Derivatized_Standards -
SA360959STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_3_analyticalreplicate_3_04252024_SZ_10312C13C_Derivatized_Standards -
SA360960STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_2_analyticalreplicate_2_05012024_SZ_6712C13C_Derivatized_Standards -
SA360961STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_3_analyticalreplicate_1_05012024_SZ_0612C13C_Derivatized_Standards -
SA360962STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_2_analyticalreplicate_2_04252024_SZ_6712C13C_Derivatized_Standards -
SA360963STS_supernatant_Standards_12C13C_DnCl_biologicalreplicate_1_analyticalreplicate_1_04252024_SZ_1912C13C_Derivatized_Standards -
SA360964STS_supernatant_Standards_12C13C_DnHz_biologicalreplicate_3_analyticalreplicate_2_05012024_SZ_5512C13C_Derivatized_Standards -
SA360965STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_1_analyticalreplicate_3_05012024_SZ_9212C_Derivatized_Pool -
SA360966STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_3_analyticalreplicate_1_04252024_SZ_0712C_Derivatized_Pool -
SA360967STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_2_analyticalreplicate_3_04252024_SZ_8012C_Derivatized_Pool -
SA360968STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_3_analyticalreplicate_2_04252024_SZ_5612C_Derivatized_Pool -
SA360969STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_2_analyticalreplicate_2_05012024_SZ_6812C_Derivatized_Pool -
SA360970STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_3_analyticalreplicate_3_05012024_SZ_10412C_Derivatized_Pool -
SA360971STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_2_analyticalreplicate_2_04252024_SZ_6812C_Derivatized_Pool -
SA360972STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_3_analyticalreplicate_2_05012024_SZ_5612C_Derivatized_Pool -
SA360973STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_2_analyticalreplicate_3_05012024_SZ_8012C_Derivatized_Pool -
SA360974STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_1_analyticalreplicate_1_05012024_SZ_2012C_Derivatized_Pool -
SA360975STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_2_analyticalreplicate_1_04252024_SZ_3212C_Derivatized_Pool -
SA360976STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_1_analyticalreplicate_1_04252024_SZ_2012C_Derivatized_Pool -
SA360977STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_1_analyticalreplicate_2_05012024_SZ_4412C_Derivatized_Pool -
SA360978STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_1_analyticalreplicate_2_04252024_SZ_4412C_Derivatized_Pool -
SA360979STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_3_analyticalreplicate_1_05012024_SZ_0712C_Derivatized_Pool -
SA360980STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_1_analyticalreplicate_3_04252024_SZ_9212C_Derivatized_Pool -
SA360981STS_supernatant_Pool_QC_12C_DnCl_biologicalreplicate_3_analyticalreplicate_3_04252024_SZ_10412C_Derivatized_Pool -
SA360982STS_supernatant_Pool_QC_12C_DnHz_biologicalreplicate_2_analyticalreplicate_1_05012024_SZ_3212C_Derivatized_Pool -
SA360983STS_supernatant_Process_Blank_12C_DnHz_1_05012024_SZ_0312C_Derivatized_Process_Blank -
SA360984STS_supernatant_Process_Blank_12C_DnCl_2_04252024_SZ_11612C_Derivatized_Process_Blank -
SA360985STS_supernatant_Process_Blank_12C_DnCl_1_04252024_SZ_0312C_Derivatized_Process_Blank -
SA360986STS_supernatant_Process_Blank_12C_DnHz_2_05012024_SZ_11612C_Derivatized_Process_Blank -
SA360987STS_supernatant_Standards_12C_DnCl_biologicalreplicate_2_analyticalreplicate_3_04252024_SZ_7812C_Derivatized_Standards -
SA360988STS_supernatant_Standards_12C_DnHz_biologicalreplicate_2_analyticalreplicate_1_05012024_SZ_3012C_Derivatized_Standards -
SA360989STS_supernatant_Standards_12C_DnHz_biologicalreplicate_1_analyticalreplicate_1_05012024_SZ_1812C_Derivatized_Standards -
SA360990STS_supernatant_Standards_12C_DnCl_biologicalreplicate_3_analyticalreplicate_3_04252024_SZ_10212C_Derivatized_Standards -
SA360991STS_supernatant_Standards_12C_DnHz_biologicalreplicate_2_analyticalreplicate_2_05012024_SZ_6612C_Derivatized_Standards -
SA360992STS_supernatant_Standards_12C_DnCl_biologicalreplicate_1_analyticalreplicate_3_04252024_SZ_9012C_Derivatized_Standards -
SA360993STS_supernatant_Standards_12C_DnHz_biologicalreplicate_3_analyticalreplicate_1_05012024_SZ_0512C_Derivatized_Standards -
SA360994STS_supernatant_Standards_12C_DnHz_biologicalreplicate_1_analyticalreplicate_2_05012024_SZ_4212C_Derivatized_Standards -
SA360995STS_supernatant_Standards_12C_DnCl_biologicalreplicate_3_analyticalreplicate_1_04252024_SZ_0512C_Derivatized_Standards -
SA360996STS_supernatant_Standards_12C_DnHz_biologicalreplicate_3_analyticalreplicate_2_05012024_SZ_5412C_Derivatized_Standards -
SA360997STS_supernatant_Standards_12C_DnCl_biologicalreplicate_2_analyticalreplicate_2_04252024_SZ_6612C_Derivatized_Standards -
SA360998STS_supernatant_Standards_12C_DnHz_biologicalreplicate_2_analyticalreplicate_3_05012024_SZ_7812C_Derivatized_Standards -
SA360999STS_supernatant_Standards_12C_DnHz_biologicalreplicate_3_analyticalreplicate_3_05012024_SZ_10212C_Derivatized_Standards -
SA361000STS_supernatant_Standards_12C_DnCl_biologicalreplicate_1_analyticalreplicate_2_04252024_SZ_4212C_Derivatized_Standards -
SA361001STS_supernatant_Standards_12C_DnCl_biologicalreplicate_2_analyticalreplicate_1_04252024_SZ_3012C_Derivatized_Standards -
SA361002STS_supernatant_Standards_12C_DnCl_biologicalreplicate_3_analyticalreplicate_2_04252024_SZ_5412C_Derivatized_Standards -
SA361003STS_supernatant_Standards_12C_DnHz_biologicalreplicate_1_analyticalreplicate_3_05012024_SZ_9012C_Derivatized_Standards -
SA361004STS_supernatant_Standards_12C_DnCl_biologicalreplicate_1_analyticalreplicate_1_04252024_SZ_1812C_Derivatized_Standards -
SA361057CE_B08_plate_1_RPpos_supernatant_SZ_04262024_70iPSC cells CE,Basal
SA361058CE_A07_plate_3_HILICneg_supernatant_SZ_04262024_39iPSC cells CE,Basal
SA361059STS_supernatant_CE_B08_plate_1_12C_DnHz_05012024_SZ_48iPSC cells CE,Basal
SA361060CE_A07_plate_3_RPpos_supernatant_SZ_04262024_40iPSC cells CE,Basal
SA361061STS_supernatant_CE_A07_plate_1_12C_DnHz_05012024_SZ_94iPSC cells CE,Basal
SA361062STS_supernatant_CE_A07_plate_3_12C_DnHz_05012024_SZ_53iPSC cells CE,Basal
SA361063STS_supernatant_CE_B08_plate_2_12C_DnCl_04252024_SZ_39iPSC cells CE,Basal
SA361064CE_A06_plate_2_RPpos_supernatant_SZ_04262024_46iPSC cells CE,Basal
SA361065CE_B08_plate_2_HILICneg_supernatant_SZ_04262024_47iPSC cells CE,Basal
SA361066CE_A06_plate_2_HILICneg_supernatant_SZ_04262024_45iPSC cells CE,Basal
SA361067CE_A06_plate_1_RPpos_supernatant_SZ_04262024_112iPSC cells CE,Basal
SA361068CE_B08_plate_2_RPpos_supernatant_SZ_04262024_48iPSC cells CE,Basal
SA361069STS_supernatant_CE_A06_plate_1_12C_DnCl_04252024_SZ_75iPSC cells CE,Basal
SA361070STS_supernatant_CE_A07_plate_2_12C_DnHz_05012024_SZ_113iPSC cells CE,Basal
SA361071CE_B08_plate_3_RPpos_supernatant_SZ_04262024_108iPSC cells CE,Basal
SA361072STS_supernatant_CE_A06_plate_3_12C_DnHz_05012024_SZ_75iPSC cells CE,Basal
SA361073CE_A07_plate_1_RPpos_supernatant_SZ_04262024_102iPSC cells CE,Basal
SA361074STS_supernatant_CE_A07_plate_1_12C_DnCl_04252024_SZ_53iPSC cells CE,Basal
SA361075CE_A07_plate_1_HILICneg_supernatant_SZ_04262024_101iPSC cells CE,Basal
SA361076STS_supernatant_CE_B08_plate_3_12C_DnHz_05012024_SZ_110iPSC cells CE,Basal
Showing page 1 of 5     Results:    1  2  3  4  5  Next     Showing results 1 to 100 of 420

Collection:

Collection ID:CO003439
Collection Summary:For the media collection, 500ul of media was directly aspirated into 1.5 ml Eppendorf tube from each well and flash frozen with liquid nitrogen, stored immediately at -80 degree C.
Sample Type:iPSC cells

Treatment:

Treatment ID:TR003455
Treatment Summary:KOLF2.2J cells were passaged as single cells with Accutase and seeded onto SynthemaxII coated 12-well plates at 10k cells per well. 24 h after cell passage, StemFlex media was changed to trophectoderm induction media (TE media). Basal TE media consists of DMEM/F12, supplemented with 20% KnockOut Serum (ThermoFisher, #10828028), 2 mM L-Glutamine (Gibco™, #25030081), 1x MEM non-essential amnio acid (GibcoTM, #11140050), 0.1 mM β-Mercaptoethanol (Sigma, #3148). In addition, 100 ng/ml BMP4 (R&D, #314-BP- 050/CF), and 20 μM SU5402 (Millipore Sigma, # 57263) were added at day 0 and onwards to induce trophoblast lineage (BS condition). For the induction of primitive syncytium, 1 mM A-83 (TOCRIS, #2939) was added at the end of Day 2. Media was refreshed every 2 days until the end of differentiation (Day 6). On day 6, TE media was replaced by the StemFlex media with or without addition of nutrients 24 hours prior to collection.

Sample Preparation:

Sampleprep ID:SP003453
Sampleprep Summary:See from protocol file.
Sampleprep Protocol Filename:Sample_preparation_supernatant_04012024.pdf
standards_steroids_DnHz.txt
standards_steroids_DnCl.txt

Chromatography:

Chromatography ID:CH004132
Chromatography Summary:See protocol file
Methods Filename:LC-MS.pdf
Instrument Name:Thermo Vanquish Duo UHPLC
Column Name:Thermo Accucore 150 Amide (100 x 2.1mm, 2.6um)
Column Temperature:45
Flow Gradient:0.0min: 100%A, 0.2min: 2% A, 8.75min: 2%A, 10min: 100%A, 15min: 100%A, 17min: 100%A
Flow Rate:0.55 mL/min
Solvent A:95% acetonitrile/5% water; 10mM ammonium acetate; 0.1% acetic acid
Solvent B:50% acetonitrile/50% water; 10mM ammonium acetate; 0.1% acetic acid
Chromatography Type:HILIC
  
Chromatography ID:CH004133
Chromatography Summary:See protocol file
Methods Filename:LC-MS.pdf
Instrument Name:Thermo Vanquish Duo UHPLC
Column Name:Thermo Hypersil GOLD RP C18 (50 x 2.1mm, 3um)
Column Temperature:45
Flow Gradient:0.0min: 85%A, 0.01min: 70%A, 2.01min: 52%A, 2.51min: 18%A, 11.0min: 1%A, 11.5min: 1%A, 12.0min: 1%A, 15.0min: 0%A, 16.5min: 85%A, 17.5min: 85%A
Flow Rate:0.4 mL/min
Solvent A:100% water; 0.1% formic acid
Solvent B:100% acetonitrile; 0.1% formic acid
Chromatography Type:Reversed phase
  
Chromatography ID:CH004134
Chromatography Summary:See protocol file
Methods Filename:LC-MS.pdf
Instrument Name:Thermo Vanquish Duo UHPLC
Column Name:Waters ACQUITY UPLC CSH C18 (100 x 2.1mm,1.7um)
Column Temperature:45
Flow Gradient:0.0min: 100%B, 3.0min: 100%B, 16.0min: 65%B, 18.0min: 100%B, 21.0min: 100%B, 21.5min: 0%B, 26.0min: 0%B.
Flow Rate:0.4 mL/min
Solvent A:95% water/5% acetonitrile; 0.1% Formic acid
Solvent B:100% acetonitrile; 0.1% Formic acid (v/v)
Chromatography Type:Reversed phase
  
Chromatography ID:CH004135
Chromatography Summary:See protocol file
Methods Filename:LC-MS.pdf
Instrument Name:Thermo Vanquish Duo UHPLC
Column Name:Waters ACQUITY UPLC CSH C18 (100 x 2.1mm,1.7um)
Column Temperature:45
Flow Gradient:0.0min: 0%B, 1.0min: 0%B, 4.0min: 30%B, 17.0min: 100%B, 20.0min: 100%B, 20.5min: 0%B, 25.0min: 0%B.
Flow Rate:0.4 mL/min
Solvent A:95% water/5% acetonitrile; 0.1% Formic acid
Solvent B:100% acetonitrile; 0.1% Formic acid (v/v)
Chromatography Type:Reversed phase

Analysis:

Analysis ID:AN005444
Analysis Type:MS
Analysis Protocol File:LC-MS.pdf
Chromatography ID:CH004132
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003325_AN005444_Results.txt
Units:peak intensity
  
Analysis ID:AN005445
Analysis Type:MS
Analysis Protocol File:LC-MS.pdf
Chromatography ID:CH004133
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003325_AN005445_Results.txt
Units:peak intensity
  
Analysis ID:AN005446
Analysis Type:MS
Analysis Protocol File:LC-MS.pdf
Chromatography ID:CH004134
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003325_AN005446_Results.txt
Units:peak intensity
  
Analysis ID:AN005447
Analysis Type:MS
Analysis Protocol File:LC-MS.pdf
Chromatography ID:CH004135
Has Mz:1
Has Rt:1
Rt Units:Seconds
Results File:ST003325_AN005447_Results.txt
Units:peak intensity
  logo