Summary of Study ST003822

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR002390. The data can be accessed directly via it's Project DOI: 10.21228/M8Q250 This work is supported by NIH grant, U2C- DK119886. See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003822
Study TitlePolar metabolite profiling of SLC31A1 knockout or control cells with or without rescue with over-expression of AOX
Study SummaryTo investigate whether the effects of SLC31A1 knockout can be rescued with alternative oxidase (AOX) overexpression, SEM cells containing a SLC31A1-targeting sgRNA (guide #2 or guide #7) or a intergenic -targetting sgRNA (i.e. a control sgRNA, "Intergenic1") and Cas9 were FACS-purified based on SLC31A1 expression, and then engineered to stably over-express either red fluorescent protein (RFP, as a control) or AOX from Ciona Intestinalis. Cells were then cultured in RPMI-1640 containing 10% FBS and penicillin and streptomycin in 6-well plates, and then collected for metabolomics. This demonstrated that the changes in aspartate, ureidosuccinic acid/carbamoyl aspartate and nucleotides were largely reverted by genetic overexpression of AOX.
Institute
Boston Childrens Hospital
Last NameWong
First NameAlan
Address300 Longwood Avenue
Emailalan.wong@childrens.harvard.edu
Phone(617) 355-7433
Submit Date2025-03-26
Num Groups4
Raw Data AvailableYes
Raw Data File Type(s)mzML, raw(Thermo)
Analysis Type DetailLC-MS
Release Date2025-12-22
Release Version1
Alan Wong Alan Wong
https://dx.doi.org/10.21228/M8Q250
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR002390
Project DOI:doi: 10.21228/M8Q250
Project Title:In vivo CRISPR screen identifies copper metabolism as a vulnerability in acute lymphoblastic leukemia
Project Summary:The nutrient-sparse cerebrospinal fluid (CSF) poses a significant challenge to spreading cancer cells. Despite this challenge, leukemia often spreads to the CSF and represents a significant clinical complication. To uncover nutritional dependencies of leukemia cells in the CSF that could be targeted therapeutically, we conducted an in vivo targeted CRISPR screen in a xenograft model of leukemia. We found that SLC31A1, the primary cell surface copper importer, is a genetic dependency of leukemia in both the central nervous system as well as in the hematopoietic organs. Perturbation of copper metabolism leads to complex IV deficiency, perturbed nucleotide metabolism and slowed leukemia cell proliferation. Furthermore, nutritional copper depletion reduced cancer progression in cell line based and patient-derived xenograft models of leukemia. Copper thus appears to be an actionable micronutrient in leukemia.
Institute:Boston Children's Hospital
Department:Pathology
Laboratory:Naama Kanarek
Last Name:Wong
First Name:Alan
Address:300 Longwood Avenue, Boston, MA, 02115, USA
Email:alan.wong@childrens.harvard.edu
Phone:(617) 355-7433
Funding Source:NCI 1R01CA282477-01A1

Subject:

Subject ID:SU004633
Subject Type:Cultured cells
Subject Species:Homo sapiens
Taxonomy ID:9606
Cell Strain Details:SEM leukemia cells

Factors:

Subject type: Cultured cells; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id Sample source guideRNA overexpression
SA53049520241122_QE2_HILIC_KO_AOX_repeat_AYW1314SEM leukemia cells Intergenic1 RFP
SA53049620241122_QE2_HILIC_KO_AOX_repeat_AYW1310SEM leukemia cells Intergenic1 RFP
SA53049720241122_QE2_HILIC_KO_AOX_repeat_AYW1309SEM leukemia cells Intergenic1 RFP
SA53049820241122_QE2_HILIC_KO_AOX_repeat_AYW1313SEM leukemia cells Intergenic1 RFP
SA53049920241122_QE2_HILIC_KO_AOX_repeat_AYW1312SEM leukemia cells Intergenic1 RFP
SA53050020241122_QE2_HILIC_KO_AOX_repeat_AYW1311SEM leukemia cells Intergenic1 RFP
SA53050120241122_QE2_HILIC_KO_AOX_repeat_AYW1319SEM leukemia cells SLC31A1 guide #2 AOX
SA53050220241122_QE2_HILIC_KO_AOX_repeat_AYW1320SEM leukemia cells SLC31A1 guide #2 AOX
SA53050320241122_QE2_HILIC_KO_AOX_repeat_AYW1318SEM leukemia cells SLC31A1 guide #2 AOX
SA53050420241122_QE2_HILIC_KO_AOX_repeat_AYW1315SEM leukemia cells SLC31A1 guide #2 RFP
SA53050520241122_QE2_HILIC_KO_AOX_repeat_AYW1316SEM leukemia cells SLC31A1 guide #2 RFP
SA53050620241122_QE2_HILIC_KO_AOX_repeat_AYW1317SEM leukemia cells SLC31A1 guide #2 RFP
SA53050720241122_QE2_HILIC_KO_AOX_repeat_AYW1321SEM leukemia cells SLC31A1 guide #7 AOX
SA53050820241122_QE2_HILIC_KO_AOX_repeat_AYW1322SEM leukemia cells SLC31A1 guide #7 AOX
SA53050920241122_QE2_HILIC_KO_AOX_repeat_AYW1323SEM leukemia cells SLC31A1 guide #7 AOX
SA53051020241122_QE2_HILIC_KO_AOX_repeat_AYW1324SEM leukemia cells SLC31A1 guide #7 AOX
SA53051120241122_QE2_HILIC_KO_AOX_repeat_AYW1325SEM leukemia cells SLC31A1 guide #7 AOX
SA53051220241122_QE2_HILIC_KO_AOX_repeat_AYW1326SEM leukemia cells SLC31A1 guide #7 AOX
Showing results 1 to 18 of 18

Collection:

Collection ID:CO004626
Collection Summary:One and a half million cells from culture were collected via centrifugation for 20 seconds at 18,000xG at 4C, washed once with ice-cold 0.9% NaCl, and collected via centrifugation for 20 seconds at 18,000xG at 4C. Cells were cultured in RPMI-1640 with 10% FBS and penicillin/streptomycin in a 37C incubator with 5% CO2.
Sample Type:Leukemia cells

Treatment:

Treatment ID:TR004642
Treatment Summary:Cells were seeded 0.5 million/mL into 4 mL of RPMI-1640 + 10%FBS + penicillin/streptomycin 48 hours prior to collection in 6 well plates.

Sample Preparation:

Sampleprep ID:SP004639
Sampleprep Summary:Cell pellet was resuspended in 400uL of 100% LC-MS grade methanol supplemented with isotopically-labelled amino acid standards [Cambridge Isotope Laboratories, MSK-A2-1.2], aminopterin, and reduced glutathione standard [Cambridge Isotope Laboratories, CNLM-6245-10]). with repeated pipetting up and down and vortexing for 10 seconds. Then, 100uL of LCMS-grade water containing 125 mM Ammonium Acetate, 10 mM Na-Ascorbate, and 7.9 mg/mL 5,5-dithio-bis-(2-nitrobenzoic acid (Ellman's reagent) was added, and the sample vortex for another 10 seconds. Samples were then centrifuged for 10 minutes at 18,000 g to pellet cell debris. The supernatant was transferred to a new tube and dried on ice using a liquid nitrogen dryer. The dried metabolites were then resuspended in 30uL and 2uL was injected.

Combined analysis:

Analysis ID AN007474
Chromatography ID CH005666
MS ID MS007170
Analysis type MS
Chromatography type HILIC
Chromatography system Thermo Vanquish
Column SeQuant ZIC-HILIC (150 x 2.1mm,5um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Orbitrap
Ion Mode UNSPECIFIED
Units Normalized peak area

Chromatography:

Chromatography ID:CH005666
Chromatography Summary:2 μL of each sample was injected into a ZIC-pHILIC 150 x 2.1 mm (5 μm particle size) column (EMD Millipore) operated on a Vanquish™ Flex UHPLC system (Thermo Fisher Scientific). Chromatographic separation was achieved using the following conditions: buffer A was 95% acetonitrile and 5% 20 mM ammonium carbonate, 0.1% ammonium hydroxide in water; buffer B was 95% 20 mM ammonium carbonate, 0.1% ammonium hydroxide in water and 5% acetonitrile. Gradient conditions used were: 0-20 min: linear gradient from 16.6% to 83.4% B; 20-24 min: hold at 83.4% B; 24-24.1 min: from 83.4% to 16.6% B; 24.1-32 min: hold at 20% B at 0.150 mL/min flow rate. The column oven and autosampler tray were held at 25 °C and 4 °C, respectively.
Instrument Name:Thermo Vanquish
Column Name:SeQuant ZIC-HILIC (150 x 2.1mm,5um)
Column Temperature:25
Flow Gradient:0-20 min: linear gradient from 16.6% to 83.4% B; 20-24 min: hold at 83.4% B; 24-24.1 min: from 83.4% to 16.6% B; 24.1-32 min: hold at 20% B at 0.150 mL/min flow rate. The column oven and autosampler tray were held at 25 °C and 4 °C, respectively.
Flow Rate:0.15 mL/min
Solvent A:95% acetonitrile/5% water; 20mM ammonium carbonate; 0.1% ammonium hydroxide
Solvent B:95% water/5% acetonitrile; 20mM ammonium carbonate; 0.1% ammonium hydroxide
Chromatography Type:HILIC

MS:

MS ID:MS007170
Analysis ID:AN007474
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS data acquisition was performed using a QExactive benchtop orbitrap mass spectrometer equipped with an Ion Max source and a HESI II probe (Thermo Fisher Scientific) and polarity switching was used. Four scans were used: full scans in both positive and negative ionization mode in a range of m/z = 70–1000, with the resolution set at 70,000, the AGC target at 1 × 106, and the maximum injection time (Max IT) at 20 msec from 0-20 minutes. A third scan in the negative mode was used with range of m/z = 220-700 from 0-20 minutes and the same resolution, AGC settings with 30ms Max IT. Lastly, a targeted-SIM scan was added with a resolution of 35k, AGC target 1e5, and max IT 20ms, isolation window = 1.0 m/z, with an inclusion m/z of 503.0552 (corresponding to Ellman-derivatized glutathione). Tune file parameters were: spray voltage = 3.5kV, capillary temperature = 320C, S-lens RF = 50, auxillary gas temperature = 350C.
Ion Mode:UNSPECIFIED
  logo